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Abstract

We study the problem of representation learning for control from partial and po-
tentially high-dimensional observations. We approach this problem via direct latent
model learning, where one directly learns a dynamical model in some latent state
space by predicting costs. In particular, we establish finite-sample guarantees of find-
ing a near-optimal representation function and a near-optimal controller using the
directly learned latent model for infinite-horizon time-invariant Linear Quadratic
Gaussian (LQG) control. A part of our approach to latent model learning closely re-
sembles MuZero, a recent breakthrough in empirical reinforcement learning, in that
it learns latent dynamics implicitly by predicting cumulative costs. A key technical
contribution of this work is to prove persistency of excitation for a new stochastic
process that arises from the analysis of quadratic regression in our approach.

1 Introduction

Control with a learned latent model is state-of-the-art in several reinforcement learning (RL)
benchmarks, including board games, Atari games, and visuomotor control (Schrittwieser et al.,
2020; Ye et al., 2021; Hafner et al., 2023). To better understand this modern machinery, we
introduce it to a classical optimal control problem, namely Linear Quadratic Gaussian (LQG)
control, and study its theoretical, finite-sample performance. Essential to this approach is the
learning of two components: a state representation function that maps an observed history to
some latent state, and a latent model that predicts the transition and cost in the latent state
space. The latent model is usually a Markov decision process, using which we obtain a policy
in the latent space or execute online planning.

What is the correct objective to optimize for learning a latent model? One popular choice is
to learn a function that reconstructs the observation from the latent state (Hafner et al., 2019a,b,
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2020, 2023). A latent model learned this way is agnostic to control tasks and retains all the infor-
mation about the environment. This class of approaches can achieve satisfactory performance,
but are prone to background distraction and control-irrelevant information (Fu et al., 2021). The
second class of methods learn an inverse model that infers actions from latent states at different
time steps (Pathak et al., 2017; Lamb et al., 2022). A latent model learned with this methodology
is also task agnostic but extracts control-relevant information. In contrast, task-relevant repre-
sentations can be learned by predicting costs in the control task (Oh et al., 2017; Zhang et al.,
2020; Schrittwieser et al., 2020). The concept that a good latent state should be able to predict
costs is intuitive, and the costs are directly relevant to optimal control. Hence, (Tian et al., 2022)
refers to this class of methods as “direct latent model learning”, which is the focus of this work.

The direct latent model learning method of particular interest to us is that of MuZero (Schrit-
twieser et al., 2020). Announced by DeepMind in 2019, MuZero extends the line of works in-
cluding AlphaGo (Silver et al., 2016), AlphaGo Zero (Silver et al., 2017), and AlphaZero (Silver
et al., 2018) by not requiring knowledge of the game rules. MuZero matches the superhuman
performance of AlphaZero in Go, shogi and chess, while outperforming model-free RL algo-
rithms in Atari games. MuZero builds upon the powerful planning procedure of Monte Carlo
Tree Search, with the major innovation being learning a latent model. The latent model replaces
the rule-based simulator during planning, and avoids the burdensome planning in pixel space
for Atari games.

MuZero is a milestone algorithm in representation learning for control. Intuitively, the
algorithm design makes sense, but its complexity has so far inhibited a formal theoretical study.
On the other hand, statistical learning theory for linear dynamical systems and control has
evolved rapidly in recent years (Tsiamis et al., 2022); for partially observable linear dynamical
systems, much of the work relies on learning Markov parameters, lacking a direct connection to
the empirical methods used in practice for possibly nonlinear systems. In this work, we aim to
bridge the two areas by studying provable MuZero-style latent model learning in LQG control.

The latent model learning of MuZero features three ingredients: 1) stacking frames, i.e.,
observations, as input to the representation function; 2) predicting costs, “optimal” values, and
“optimal” actions from latent states; and 3) implicit learning of latent dynamics by predicting
these quantities from latent states at future time steps. These are the defining characteristics of
the MuZero-style algorithm that we shall consider. In MuZero, the “optimal” values and actions
are found by the powerful online planning procedure. In this work, we simplify the setup by
considering data collected using random actions, which are known to suffice for identifying
a partially observable linear dynamical system (Oymak and Ozay, 2019). In this setup, the
values become those associated with this trivial policy and we do not predict actions since they
are random noises anyway. Note that although our study of the above ingredients is directly
motivated by MuZero, previous empirical works have also explored them. For example, frame
stacking has been a widely used technique to handle partial observability (Mnih et al., 2013,
2015); predicting values for learning a latent model has been studied in (Oh et al., 2017), which
also learns the latent state transition implicitly.

Closely related to our work, (Tian et al., 2022) also considers provable direct latent model
learning in LQG, but for the finite-horizon time-varying setting. Our work builds upon it
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and complements it in two ways: 1) we extend their algorithm to the time-invariant setting
with a stationary representation function and latent model, which is closer to what has been
deployed in practice; 2) we present and analyze a new, MuZero-style latent model learning
algorithm. Both 1) and 2) introduce new technical challenges to be addressed. We summarize
our contributions as follows.

• We show that two direct latent model learning methods provably solve infinite-horizon
time-invariant LQG control by establishing finite-sample guarantees. Both methods only
need a single trajectory; one resembles the method in (Tian et al., 2022), and the other
resembles MuZero.

• By analyzing the MuZero-style algorithm, we notice the potential issue of coordinate mis-
alignment; that is, costs can be invariant to certain transformations of the latent states,
and implicit dynamics learning by predicting one-step transition may not recover the la-
tent state coordinates consistently. This insight suggests the need of predicting multi-step
transition or other coordinate alignment procedures in implicit dynamics learning.

• Technically, we overcome the difficulty of having correlated data samples in a single trajec-
tory for latent model learning, by proving a new result about the persistency of excitation
for a stochastic process that arises from the analysis of the quadratic regression subroutine
in both of our methods.

Notation. Random vectors are denoted by lowercase letters; sometimes they also denote their
realized values. Uppercase letters denote matrices, some of which can be random. Let a ∧ b
denote the minimum between scalars a and b. 1 denotes either the scalar one or a vector con-
sisting of all ones; I denotes an identity matrix. The dimension, when emphasized, is specified
in subscripts, e.g., 1d, Id. Given vector v ∈ Rd, let ‖v‖ denote its `2 norm and ‖v‖P := (v>Pv)1/2

for positive semidefinite P ∈ Rd×d. Given symmetric matrices P and Q, P � Q or Q ≺ P means
P−Q is positive definite, and P < Q or Q 4 P means P−Q is positive semidefinite. Semicolon
“;” denotes stacking vectors or matrices vertically. For a collection of d-dimensional vectors
(vt)

j
t=i, let vi:j := [vi; vi+1; . . . ; vj] ∈ Rd(j−i+1) denote the concatenation along the column. For

random variable x, let ‖x‖ψθ
denote its θ-sub-Weibull norm for θ > 0, a special case of Orlicz

norms (Zhang and Wei, 2022), with θ = 1, 2 corresponding to subexponential and sub-Gaussian
norms. For matrix A, let σmin(A), ‖A‖2, ‖A‖F, and ‖A‖∗ denote its minimum eigenvalue,
minimum singular value, operator norm (induced by vector `2 norms), Frobenius norm, and
nuclear norm, respectively. 〈·, ·〉F denotes the Frobenius inner product between matrices. For
square matrix A, let λmin(A) be its minimum eigenvalue and ρ(A) be its spectral radius. De-
fine α(A) := supk≥0 ‖Ak‖2ρ(A)−k. Let svec(·) denote the operator of flattening a symmetric
matrix by stacking its columns; it does not repeat the off-diagonal elements, but scales them by√

2 (Schacke, 2004). We adopt the standard use of O(·), Ω(·), Θ(·), where the hidden constants
are dimension-free but may depend on system parameters.

3



2 Problem setup

A partially observable linear time-invariant (LTI) dynamical system is described by

xt+1 = A∗xt + B∗ut + wt, yt = C∗xt + vt, (2.1)

with state xt ∈ Rdx , observation yt ∈ Rdy , and control ut ∈ Rdu for all t ≥ 0. Process noises
(wt)t≥0 and observation noises (vt)t≥0 are i.i.d. zero-mean Gaussian random vectors with co-
variance matrices Σw and Σv, respectively, and the two sequences are mutually independent.
Let initial state x0 be sampled from N (0, Σ0). The quadratic cost function is given by

c(x, u) = ‖x‖2
Q∗ + ‖u‖2

R∗ , (2.2)

where Q∗ < 0 and R∗ � 0.

A policy/controller π determines an action/control input ut at time step t based on the
history [y0:t; u0:(t−1)] up to this time step. For t ≥ 0, ct := c(xt, ut) denotes the cost at time step
t. Given a policy π, let

Jπ := lim sup
T→∞

E

[
1
T ∑T−1

t=0 ct

]
(2.3)

denote the time-average expected cost. The objective of LQG control is to find a policy π such
that Jπ is minimized.

In the fully observable setting, known as the linear quadratic regulator (LQR), yt = xt.
A linear controller with feedback gain K ∈ Rdu×dx determines action ut = Kxt at time step
t. Let JK(A∗, B∗, Q∗, R∗) denote the time-average expected cost (2.3) in the LQR problem
(A∗, B∗, Q∗, R∗) under feedback gain K and define J∗(A∗, B∗, Q∗, R∗) := minK JK(A∗, B∗, Q∗, R∗).

We make the following standard assumptions.

Assumption 1. System dynamics (2.1) and cost (2.2) satisfy:

1. The system is stable, that is, ρ(A∗) < 1.

2. (A∗, B∗) is ν-controllable for some ν > 0, that is, the controllability matrix

Φc(A∗, B∗) := [B∗, A∗B∗, . . . , (A∗)dx−1B∗]

has rank dx and σmin(Φc(A∗, B∗)) ≥ ν.

3. (A∗, C∗) is ω-observable for some ω > 0, that is, the observability matrix

Φo(A∗, C∗) := [C∗; C∗A∗; . . . ; C∗(A∗)dx−1]

has rank dx and σmin(Φo(A∗, C∗)) ≥ ω.

4. (A∗, Σ1/2
w ) is η-controllable for some η > 0.

5. (A∗, (Q∗)1/2) is µ-observable for some µ > 0.
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6. Σv < σ2
v I for some σv > 0; this can always be achieved by inserting Gaussian noises with full-rank

covariance matrices to the observations.

7. R∗ < r2 I for some r > 0.

8. The operator norms of A∗, B∗, C∗, Q∗, R∗, Σw, Σv, Σ0 and α(A∗), α(A∗) are O(1); the singular
value lower bounds ν, ω, ν, η, σv, r and spectral radii ρ(A∗), ρ(A∗) are Ω(1), where A∗ is defined
in §2.1.

If the system parameters (A∗, B∗, C∗, Q∗, R∗, Σw, Σv) are known, the optimal policy is ob-
tained by combining the Kalman filter

z∗t+1 = A∗z∗t + B∗ut + L∗(yt+1 − C∗(A∗z∗t + B∗ut)) (2.4)

with the optimal feedback gain K∗ of the linear quadratic regulator (LQR) such that ut = K∗z∗t ,
where L∗ is the Kalman gain, and at the initial time step, we can set, e.g., z∗0 = L∗y0. This fact is
known as the separation principle, and the Kalman gain and optimal feedback gain are given by

L∗ = S∗(C∗)>(C∗S∗(C∗)> + Σv)
−1, (2.5)

K∗ = − ((B∗)>P∗B∗ + R)−1(B∗)>P∗A∗, (2.6)

where S∗ and P∗ are determined by their respective discrete-time algebraic Riccati equations (DAREs):

S∗ = A∗
(
S∗ − S∗(C∗)>(C∗S∗(C∗)> + Σv)

−1C∗S∗
)
(A∗)> + Σw, (2.7)

P∗ = (A∗)>
(

P∗ − P∗B∗((B∗)>P∗B∗ + R∗)−1(B∗)>P∗
)

A∗ + Q∗. (2.8)

Assumptions 1.2 to 1.7 guarantee the existence and uniqueness of positive definite solutions S∗

and P∗; Assumption 1.8 further guarantees that their operator norms are O(1) and minimum
singular values are Ω(1). The assumption on α(A∗), α(A∗), ρ(A∗), ρ(A∗) provides guarantees
for state estimation from a finite history and is mild (Mania et al., 2019; Oymak and Ozay,
2019). If ρ(A∗) or ρ(A∗) equals zero, (A∗)dx or (A∗)dx is a zero matrix by the Cayley-Hamilton
theorem, so using history length H ≥ dx completely eliminates the truncation errors.

We consider the data-driven control setting, where the LQG model (A∗, B∗, C∗, Q∗, Σw, Σv)

is unknown. For simplicity, we assume R∗ is known, though our approaches can be readily
extended to the case where it is unknown by learning it from predicting costs.

2.1 Latent model of LQG

The stationary Kalman filter (2.4) asymptotically produces the optimal state estimation in the
sense of minimum mean squared errors. With a finite horizon, however, the optimal state
estimator is time-varying, given by

z∗t+1 = A∗z∗t + B∗ut + L∗t+1(yt+1 − C∗(A∗z∗t + B∗ut)), (2.9)

where L∗t is the time-varying Kalman gain, converging to L∗ as t → ∞. This convergence is
equivalent to that of error covariance matrix E[(xt − z∗t )(xt − z∗t )

>], which happens exponen-
tially fast (Komaroff, 1994). Hence, for simplicity, we assume this error covariance matrix is
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stationary at the initial time step by the choice of z∗0 so that L∗t = L∗ for t ≥ 1; this assumption
is common in the literature (Lale et al., 2020, 2021; Jadbabaie et al., 2021). The innovation term
it+1 := yt+1 − C∗(A∗z∗t + B∗ut) is independent of the history (y0, u0, y1, u1, . . . , yt+1) and (it)t≥1

are mutually independent. The following proposition taken from (Tian et al., 2022, Proposition
1) represents the system in terms of the state estimates obtained by the Kalman filter, which we
refer to as the latent model.

Proposition 1. Let (z∗t )t≥1 be state estimates given by the Kalman filter. Then, for t ≥ 0,

z∗t+1 = A∗z∗t + B∗ut + L∗it+1,

where L∗it+1 is independent of z∗t and ut, i.e., the state estimates follow the same linear dynamics with
noises L∗it+1. The cost at step t can be reformulated as functions of the state estimates by

ct = ‖z∗t ‖2
Q∗ + ‖ut‖2

R∗ + b∗ + γt + ηt,

where b∗ > 0, and γt = ‖z∗t − xt‖2
Q∗ − b∗, ηt =

〈
z∗t , xt − z∗t

〉
Q∗ are both zero-mean subexponential

random variables. Moreover, b∗ = O(1) and ‖γt‖ψ1 = O(d1/2
x ); if control ut ∼ N (0, σ2

u I) for t ≥ 0,
then we have ‖ηt‖ψ1 = O(d1/2

x ).

Proposition 1 shows that the dynamics of the state estimates computed by the time-varying
Kalman filter is the same as the original system up to noises; the costs are also the same, up
to constants and noises. Hence, a latent model can be parameterized by (A, B, Q, R∗), with the
constant b∗ and noises neglected due to their irrelevance to planning. A stationary latent policy
is a linear controller ut = Kzt on latent state zt, parameterized by feedback gain K ∈ Rdu×dx .

The latent model enables us to find a good latent policy. To learn such a latent model and
to deploy a latent policy in the original partially observable system, we need a representation
function. Let A∗ := (I − L∗C∗)A∗ and B∗ := (I − L∗C∗)B∗. Then, the Kalman filter can be
written as z∗t+1 = A∗z∗t + B∗ut + L∗yt+1. For t ≥ 0, unrolling the recursion gives

z∗t = A∗(A∗z∗t−2 + B∗ut−2 + L∗yt−1) + B∗ut−1 + L∗yt

= [(A∗)t−1L∗, . . . , L∗]y1:t + [(A∗)t−1B∗, . . . , B∗]u0:(t−1) + (A∗)tz∗0
=: M∗t [y1:t; u0:(t−1); z∗0 ],

where M∗t ∈ Rdx×(tdy+tdu+dx). This means the representation function can be parameterized as
linear mappings for full histories (with y0 replaced by z∗0). Despite the simplicity, the input
dimension of the function grows linearly in time, making it intractable to estimate the state
using the full history for large t; nor is it necessary, since the impact of old data decreases
exponentially. Under Assumption 1, ρ(A∗) < 1 (Bertsekas, 2012, Appendix E.4). With an
H-step truncated history, the state estimate can be written as

z∗t = [(A∗)H−1L∗, . . . , L∗]y(t−H+1):t + [(A∗)H−1B∗, . . . , B∗]u(t−H):(t−1) + δt

=: M∗[y(t−H+1):t; u(t−H):(t−1)] + δt,

where δt = (A∗)Hz∗t−H, whose impact decays exponentially in H and can be neglected for suf-
ficiently large H, since z∗t−H converges to a stationary distribution and its norm is bounded
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with high probability. Hence, the representation function that we aim to recover is M∗ ∈
Rdx×H(dy+du), which takes as input the H-step history ht = [y(t−H+1):t; u(t−H):(t−1)]. Henceforth,
we let dh := H(dy + du). Then, a representation function is parameterized by matrix M ∈ Rdx×dh .

Overall, a policy is a combination of a representation function M and a feedback gain K in
the latent model, denoted by π = (M, K). Learning to solve LQG control in this framework
can thus be achieved by: 1) learning representation function M; 2) extracting latent model
(A, B, Q, R∗); and 3) finding the optimal K by planning in the latent model. Next, we introduce
our approach following this pipeline.

3 Method

In practice, latent model learning methods collect trajectories by interacting with the system
online using some policy; the trajectories are used to improve the learned latent model, which
in turn improves the policy. In LQG control, it is known that the simple setup allows us to learn
a good latent model from a single trajectory, collected using zero-mean Gaussian inputs; see
e.g., (Oymak and Ozay, 2019). This is also how we assume the data are collected. We note that
our results also apply to data from multiple independent trajectories using the same zero-mean
Gaussian inputs.

In direct latent model learning, state representations are learned by predicting costs. To
learn the transition function in the latent model, two approaches are explored in the literature.
The first approach explicitly minimizes transition prediction errors (Subramanian et al., 2020;
Hafner et al., 2019a). Algorithmically, the overall loss is a combination of cost and transition
prediction errors. The second approach, which MuZero takes, learns transition implicitly, by
minimizing cost prediction errors at future states generated from the transition function (Oh et al.,
2017; Schrittwieser et al., 2020). Algorithmically, the overall loss aggregates the cost prediction
errors across multiple time steps. In both approaches, the coupling of different terms in the
loss makes finite-sample analysis difficult. As observed in (Tian et al., 2022), the structure of
LQG allows us to learn the representation function independently of learning the transition
function. This allows us to formulate both approaches under the same direct latent model
learning framework (Algorithm 1).

Algorithm 1 consists of three main steps. Lines 3 to 5 correspond to cost-driven represen-
tation learning. Lines 6 to 8 correspond to latent model learning, where the system dynamics
can be identified either explicitly, by ordinary least squares (SysId), or implicitly, by future cost
prediction (CoSysId, Algorithm 2). Line 8 corresponds to latent policy optimization; in LQG
this amounts to solving a DARE. Below we elaborate on cost-driven representation learning,
SysId, and CoSysId in order.

3.1 Cost-driven representation learning

The procedure of cost-driven representation learning is almost identical to that in (Tian et al.,
2022). The main idea is to perform quadratic regression (3.2) to the dx-step cumulative costs;
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Algorithm 1 Direct latent model learning for LQG control
1: Input: length T, history length H, noise magnitude σu

2: Collect a trajectories of length T + H using ut ∼ N (0, σ2
u I), for t ≥ 0, to obtain Draw:

(y0, u0, c0, y1, u1, c1, . . . , yT+H) (3.1)

3: Estimate the state representation function and cost constants by solving

N̂, b̂0 ∈ argmin
N=N>,b0

∑T+H−1
t=H

(∥∥ht
∥∥2

N + b0 − ct
)2, (3.2)

where ct := ∑t+dx−1
τ=t (cτ − ‖uτ‖2

R∗)

4: Find M̂ ∈ argminM∈Rdx×H(dy+du) ‖M>M− N̂‖F

5: Compute ẑt = M̂[y(t−H+1):t; u(t−H):(t−1)] for all t ≥ H, so that the data are converted to
Dstate:

(ẑH, uH, cH, . . . , ẑT+H−1, uT+H−1, cT+H−1, ẑT+H)

6: Run SysId (3.3) or CoSysId (Algorithm 2) to obtain dynamics matrices (Â, B̂)
7: Estimate the cost function by solving

Q̃, b̂ ∈ argmin
Q=Q>,b

∑T+H−1
t=H (‖ẑt‖2

Q + b− ct)
2,

8: Truncate negative eigenvalues of Q̃ to zero to obtain Q̂ < 0
9: Find feedback gain K̂ from (Â, B̂, Q̂, R∗) by DARE (2.8) and (2.6)

10: Return: policy π̂ = (M̂, K̂)

these correspond to the value prediction in MuZero. By the µ-observability of (A∗, (Q∗)1/2)

(Assumption 1.5), the cost observability Gramian

Q∗ := ∑dx−1
t=0 ((A∗)t)>Q∗(A∗)t < µ2 I.

Under zero control and zero noise, starting from x, the dx-step cumulative cost is precisely
‖x‖2

Q∗
. Hence, N̂ estimates N∗ = (M∗)>Q∗M∗; up to an orthonormal transformation, M̂ re-

covers M∗′ := (Q∗)1/2M∗, the representation function under an equivalent parameterization,
termed as the normalized parameterization in (Tian et al., 2022), where

A∗′ = (Q∗)1/2A∗(Q∗)−1/2, B∗′ = (Q∗)1/2B, C∗′ = C∗(Q∗)−1/2,

w′t = (Q∗)1/2wt, Q∗′ = (Q∗)−1/2Q∗(Q∗)−1/2.

Due to the following proposition, the algorithm does not need to know the dimension dx of the
latent model; it can discover dx from the eigenvalues of N̂.

Proposition 2. Under i.i.d. control inputs ut ∼ N (0, σ2
u I) for t ≥ 0, λmin(Cov(z∗t )) = Ω(ν2) for

t ≥ dx, where ν is defined in Assumption 1.3. Recall that for a square matrix A, we define α(A) :=
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supk≥0 ‖Ak‖2ρ(A)−k. As long as H ≥ log(aα(A∗))
log(ρ(A∗)−1)

for some dimension-free constant a > 0, M∗ has

rank dx and σmin(M∗) ≥ Ω(νH−1/2).

Proof. For t ≥ dx, unrolling the Kalman filter gives

z∗t = A∗z∗t−1 + B∗ut−1 + L∗it

= A∗(A∗z∗t−2 + B∗ut−2 + L∗it−1) + L∗it

= [B∗, . . . , (A∗)dx−1B∗][ut−1; . . . ; ut−dx ] + (A∗)dx z∗t−dx
+ [L∗, . . . , (A∗)dx−1L∗][it; . . . ; it−dx+1],

where (uτ)
t−1
τ=t−dx

, z∗t−dx
and (iτ)t

τ=t−dx+1 are independent. For H ≥ dx, the matrix multiplied by
[ut−1; . . . ; ut−dx ] is precisely the controllability matrix Φc(A∗, B∗). Then,

Cov(z∗t ) = E[z∗t (z
∗
t )
>] < Φc(A∗, B∗)E[[ut−1; . . . ; ut−`][ut−1; . . . ; ut−`]

>]Φ>c (A∗, B∗)

= σ2
uΦc(A∗, B∗)Φ>c (A∗, B∗).

By the ν-controllability of (A∗, B∗), Cov(z∗t ) is full-rank and λmin(Cov(z∗t )) ≥ σ2
uν2. Since z∗t =

M∗ht + δt, we have

Cov(M∗ht) = Cov(z∗t − δt) = Cov(z∗t ) + Cov(δt)−Cov(z∗t , δt)−Cov(δt, z∗t ).

By Lemma 3,

‖Cov(z∗t , δt)‖2 = ‖Cov(δt, z∗t )‖2 ≤ ‖Cov(z∗t )
1/2‖2‖Cov(δt)

1/2‖2.

Hence, by Weyl’s inequality,

λmin(Cov(M∗ht)) ≥ λmin(Cov(z∗t ))− 2‖Cov(z∗t )
1/2‖2‖Cov(δt)

1/2‖2.

Since ‖Cov(z∗t )‖2 = O(1) due to the stability of A∗ and δt = (A∗)Hz∗t−H, there exists some

dimension-free constant a > 0 such that as long as H ≥ log(aα(A∗))
log(ρ(A∗)−1)

,

λmin(Cov(M∗ht)) ≥ σ2
uν2/2.

On the other hand,

E[M∗hth>t (M∗)>] 4 ‖E[hth>t ]‖2M∗(M∗)>.

Since ht = [y(t−H+1):t; u(t−H):(t−1)] and (Cov(yt))t≥0, (Cov(ut))t≥0 have O(1) operator norms,
by Lemma 4, ‖Cov(ht)‖2 = ‖E[hth>t ]‖2 = O(H). Hence,

0 < σ2
uν2/2 ≤ λmin(Cov(M∗ht)) = O(H)σ2

dx
(M∗).

Since M∗ ∈ Rdx×dh , this implies that rank(M∗) = dx and σmin(M∗) = Ω(νH−1/2).
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Proposition 2 is an adaption of (Tian et al., 2022, Proposition 2) to the infinite-horizon LTI
setting. Necessarily, this implies that by our choice of H, dh = H(dy + du) ≥ dx. More-
over, since Q∗ < µ2 I, N∗ = (M∗)>Q∗M∗ is a dh × dh matrix with rank dx, and λ+

min(N∗) ≥
λmin(Q

∗
)λ2

min(M∗) = Ω(µ2ν2H−1). Hence, if N̂ is sufficiently close to N∗, by setting an appro-
priate threshold on the eigenvalues of N̂, the dimension of the latent model equals the number
of eigenvalues above it.

To find an approximate factorization of N̂, let N̂ = UΛU> be its eigenvalue decomposition,
where the diagonal elements of Λ are listed in a descending order, and U is an orthonor-
mal matrix. Let Λdx be the left-top block of Λ and Udx be the left dx columns of U. By the
Eckart-Young-Mirsky theorem, M̂ = max(Λdx , 0)1/2U>dx

, where “max” applies elementwise, is
the solution to Line 4 of Algorithm 1, that is, the best approximate factorization of N̂ among
dx × dh matrices in terms of the Frobenius norm approximation error.

In the next two subsections, we move on to discuss learning latent dynamics, including the
explicit approach SysId and the implicit approach CoSysId.

3.2 Explicit learning of system dynamics

Explicit learning of the system dynamics simply minimizes the transition prediction error in the
latent space (Subramanian et al., 2020), or more generally, the statistical distances between the
predicted and estimated distributions of the next latent state, like the KL divergence (Hafner
et al., 2019a). In linear systems, it suffices to use the ordinary least squares as the SysId proce-
dure, that is, to solve

(Â, B̂) ∈ argmin
A,B

∑T+H−1
t=H ‖Aẑt + But − ẑt+1‖2. (3.3)

In this linear regression, if (ẑt)t≥H are the optimal state estimates (z∗t )t≥H (2.9), then (Simchowitz
et al., 2018) has shown finite-sample guarantees for (Â, B̂). Here, ẑt contains errors resulting
from the representation function M̂ and the residual error δt, but as long as T and H are large
enough, SysId still has a finite-sample guarantee, as will be shown in Lemma 8. We refer to the
algorithm that instantiates Algorithm 1 with SysId as CoReL (Cost-driven state Representation
Learning). As the time-varying counterpart in (Tian et al., 2022), it provably solves learning for
LQG control, as will be shown in Theorem 2.

3.3 Implicit learning of system dynamics (MuZero-style)

An important ingredient of latent model learning in MuZero (Schrittwieser et al., 2020) is to
implicitly learn the transition function by minimizing the cost prediction error at future latent
states generated from the transition function. Let zt = Mht denote the latent state given by
representation function M at step t. Let zt,0 = zt and zt,i = Azt,i−1 + But+i−1 for i ≥ 1 be
the future latent state predicted by dynamics (A, B) from zt after i steps of transition. For a
trajectory of length T + H like (3.1), the loss that considers ` steps into the future is given by

∑T+H−K−1
t=H ∑`

i=0(‖zt,i‖2
Q + ‖ut‖2

R∗ + b− ct)
2.
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Algorithm 2 CoSysId: Cost-driven system identification

1: Input: data Draw, representation function M̂
2: Estimate the system dynamics by

N̂1, b̂1 ∈ argmin
N1=N>1 ,b1

∑T+H−1
t=H

(
‖[ht; ut]‖2

N1
+ b1 − ct+1

)2 (3.6)

3: Find M̂1 ∈ argminM1∈Rdx×(Hdy+(H+1)du) ‖M>1 M1 − N̂1‖F

4: Split M̂1 to [M̃, B̃] after column H(dy + du) and set Ã = M̃M̂†.
5: Find alignment matrix Ŝ0 by

Ŝ0 ∈ argmin
S0∈Rdx×dx

∑T+H−1
t=H ‖S0M̂1[ht; ut]− M̂ht+1‖2 (3.7)

6: Return: system dynamics estimate (Â, B̂) = (Ŝ0Ã, Ŝ0B̃)

This loss involves powers of A up to A`; with the squared norm, the powers double, making
the minimization over A hard to solve and analyze for ` ≥ 2. In LQG control, our finding is
that it suffices to take ` = 1. As mentioned in §1, MuZero also predicts optimal values and
optimal actions; in LQG, to handle Q∗ 6� 0, like cost-driven representation learning (see §3.1),
we adopt the cumulative costs and use the normalized parameterization. Thus, the optimization
problem we aim to solve is given by

min
M,A,B,b

∑T+H−1
t=H

(
(‖Mht‖2 + b− ct)

2 + (‖AMht + But‖2 + b− ct+1)
2). (3.4)

To convexify the optimization problem (3.4), we define N := M>M and N1 := [AM, B]>[AM, B].
Then, (3.4) becomes

min
N,N1,b

∑T+H−1
t=H

(
(‖ht‖2

N + b− ct)
2 + (‖[ht; ut]‖2

N1
+ b− ct+1)

2). (3.5)

This minimization problem is convex in N, N1 and b, and has a closed-form solution; essen-
tially, it consists of two linear regression problems coupled by b. Since constant b is merely a
term accounting for the estimation error and not part of the representation function, we can
decouple the two regression problems by allowing b to take different values in them. This
further simplifies the algorithm: the first regression problem is exactly cost-driven representa-
tion learning (§3.1), and the second is cost-driven system identification (CoSysId, Algorithm 2).
The algorithm that instantiates Algorithm 1 with CoSysId is called CoReDyL (Cost-driven state
Representation and Dynamic Learning). Like CoReL, this MuZero-style latent model learning
method provably solves LQG control, as we will show in Theorem 2.

CoSysId has similar steps to cost-driven representation learning (§3.1), except that in Line 5
of Algorithm 2, it requires fitting a matrix Ŝ0. This is because the cost is invariant to orthonormal
transformations of the latent states, and the approximate factorization steps recover M∗ and M∗1
up to orthonormal transformations S and S1, but there is no guarantee for the two transforma-
tions to be the same. MuZero bypasses this problem by predicting multiple steps of costs into
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the future, but analyzing such an optimization function involves the additional complexity to
deal with powers of A. Here, we simply estimate this alignment matrix S0 = SS>1 . We note
that although CoSysId needs the output M̂ from cost-driven representation learning, the two
quadratic regressions (3.2) and (3.6) are not coupled and can be solved in parallel.

4 Theoretical guarantees

The following Theorem 1 shows that both CoReL and CoReDyL are guaranteed to solve un-
known LQG control with a finite number of samples.

Theorem 1. Given an unknown LQG problem satisfying Assumption 1, let M∗′ and (A∗′, B∗′, Q∗′, R∗)
be the optimal state representation function and the true system parameters under the normalized parame-
terization. For a given p ∈ (0, 1), if we run CoReL (Algorithm 1 with (3.3)) or CoReDyL (Algorithm 1
with Algorithm 2) for T ≥ poly(dx, dy, du, log(T/p))), H = Ω(log(HT)), and σu = Θ(1), then there
exists an orthonormal matrix S ∈ Rdx×dx , such that with probability at least 1− p, the representation
function M̂ satisfies

‖M̂− SM∗′‖2 = O(poly(H, dx, du, dy, log(T/p))T−1/2),

and the feedback gain K̂ satisfies

JK̂(SA∗′S>, SB∗′, SQ∗′S>, R∗)− J∗(SA∗′S>, SB∗′, SQ∗′S>, R∗)

= O(poly(H, dx, du, dy, log(T/p))T−1).

We defer the proof of Theorem 1 to §F. Compared with the time-varying setting in (Tian
et al., 2022), the bounds here do not have a separation for the initial steps and future steps,
where the bounds are much worse before the system is fully excited. This is because in the
time-invariant setting, the representation function and the latent model are both stationary.
On the other hand, to learn such stationary functions across different time steps, we need to
aggregate correlated data along a single trajectory, which poses significant challenges for the
analysis. A major effort to overcome such difficulties involves proving a new result on the
persistency of excitation (Lemma 1) using the small-ball method (Mendelson, 2015; Simchowitz
et al., 2018), discussed in §4.1 in more detail.

Compared with common system identification methods based on learning Markov parame-
ters (Oymak and Ozay, 2019; Simchowitz et al., 2019), the error bounds of the system parameters
produced by CoReDyL (or CoReL) have the same dependence on T, but worse dependence on
system dimensions. Moreover, to establish persistency of excitation, CoReDyL (or CoReL) re-
quires a larger burn-in period. These relative sample inefficiencies are the price we pay for
direct latent model learning, which is only supervised by scalar-valued costs that are quadratic
in the history, instead of vector-valued observations that are linear in the history. Hence, we have
to address the more challenging problem of quadratic regression, which lifts the dimension of the
optimization problem. On the other hand, direct latent model learning avoids learning the re-
construction function C∗ and can learn task-relevant representations in more complex settings,
as demonstrated by empirical studies.
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4.1 Persistency of excitation

Central to the analysis of CoReL and CoReDyL is the finite-sample characterization of the
quadratic regression problem. To solve (3.2), notice that

‖ht‖2
N =

〈
N, hth>t

〉
F =

〈
svec(N), svec(hth>t )

〉
,

so this quadratic regression is essentially a linear regression problem in terms of [svec(N); b0].
A major difficulty in the analysis is to establish persistency of excitation for ([svec(hth>t ); 1])t≥H,
meaning that the minimum eigenvalue of the design matrix ∑T+H−1

t=H [svec(hth>t ); 1][svec(hth>t )
>, 1]

grows linearly in the size T of the data.

A linear lower bound on λmin(∑T+H−1
t=H hth>t ) is a known result for the identification of par-

tially observable linear dynamical systems , see the recent overview in (Tsiamis et al., 2022).
In our case, however, elements of svec(hth>t ) are products of Gaussians, making the analysis
difficult. If (ht)t≥H are independent, which is the case if they are from multiple independent
trajectories, the result has been established in (Jadbabaie et al., 2021; Tian et al., 2022). It can
also be proved with the matrix Azuma inequality (Tropp, 2012). Here, we need to aggregate
correlated data to estimate a set of stationary parameters. In sum, the difficulty we face results
from both products of Gaussians and the data dependence.

In principle, given enough burn-in time, state xt, and hence observation yt and truncated
history ht, converges to the steady-state distributions, and samples with an interval of the order
of mixing time are approximately independent (Levin and Peres, 2017). Hence, intuitively, a
linear lower bound is viable. However, the bound yielded by such an analysis deteriorates
as the system is less stable and the mixing time increases, which is qualitatively incorrect for
linear systems. To eschew such dependence, (Simchowitz et al., 2018) introduces the small-ball
method. We take the same route, while establishing different arguments to handle the products
of Gaussians.

Let us first recall the block martingale small-ball condition.

Definition 1 (Block martingale small ball (BMSB) condition (Simchowitz et al., 2018, Definition
2.1)). Let ( ft)t≥1 be a stochastic process in Rd adapted to filtration (Ft)t≥1. We say ( ft)t≥1 satisfies the
(k, Γ, q)-BMSB condition for k ∈ N+, Γ < 0 and q > 0, if for any t ≥ 1, for any fixed unit vector
v ∈ Rd, 1

k ∑k
i=1 P(| 〈 ft+i, v〉 | ≥ ‖v‖Γ | Ft) ≥ q almost surely.

The key Lemma 1 below shows that (svec(hth>t ))t≥H satisfies the BMSB condition.

Lemma 1. Let ht = [y(t−H+1):t; u(t−H):(t−1)] be the H-step history at time step t ≥ H in system (2.1)
with ut ∼ N (0, σ2

u I) for t ≥ 0. Define filtration Ft := σ(x0, v0, u0, w0, v1, . . . , ut−1, wt−1, vt).
Define ft := svec(hth>t ), adapted to (Ft)t≥H. As long as H ≥ a log(dhα(A∗) log(T/p))

log(ρ(A∗)−1)
, ( ft)t≥H is

(k, γ2 I, q)-BMSB for k = 4H, γ = Θ(1/dh), and q = Θ(1/d2
h), where Θ(·) hides the dependence

on dimension-free constants.

Then, following the analysis in (Simchowitz et al., 2018, Appendix D), we can show that if
additionally, T is large enough, then with high probability,

λmin

(
∑T+H−1

t=H ft f>t
)
= Ω(γ2q2T) = Ω(T/d6

h),
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which establishes the persistency of excitation.

The full proof of Lemma 1 is deferred to Appendix D.1. Crucial for its proof is the following
Lemma 2, which might be of independent interest.

Lemma 2. Let x be a d-dimensional zero-mean Gaussian random vector with covariance Σ. For any
d × d symmetric matrix A and constant b ∈ R that satisfy ‖A‖2

F + b2 = 1, there exists an absolute
constant a > 0, such that E[|x>Ax + b|] ≥ aλmin(Σ)d−3/2.

4.2 Main ideas in proving Theorem 1

Below we sketch the ideas of proving Theorem 1 for CoReDyL. Define M∗1 := [A∗M∗, B∗] as the
composition of one-step transition and representation functions and N∗1 := (M∗1)

>M∗1 , which is
estimated by N̂1 in (3.6).

For the quadratic regression problems (3.2) and (3.6), by establishing persistency of exci-
tation (Lemma 7) and using sub-Weibull martingale concentration (Lemma 6), we can show
that

‖N̂ − N∗‖F = O((H(dy + du))
10d3/2

x T−1/2 log3(T/p)),

‖N̂1 − N∗1 ‖F = O((H(dy + du) + dx)
10d3/2

x T−1/2 log3(T/p));

our choice of H ensures that the truncation errors are absorbed into these bounds. By the
Procrustes-type lemma in (Tu et al., 2016, Lemma 5.4), these two bounds imply bounds of the
same order on ‖M̂− SM∗′‖F and ‖M̂1 − S1M∗′1 ‖F, respectively, for some orthonormal matrices
S and S1. Thus, ‖B̃ − S1B∗′‖2 is of the same order as the bound on ‖N̂1 − N∗1 ‖2, and by the
perturbation bounds of the Moore-Penrose inverse (Wedin, 1973), so is ‖Ã− S1A∗′S>‖2.

As explained in §3.3, we need to fit the matrix S0 = SS>1 to align the next states generated by
(Ã, B̃) with those by M̂. With an analysis of perturbed linear regression (Lemma 8), we show that
Ŝ0 in Algorithm 2 satisfies ‖Ŝ0− S0‖2 = O((H(dy + du) + dx)21/2d2

xT−1/2 log4(T/p)). Therefore,
the bounds on ‖Â − SA∗S>‖2 and ‖B̂ − SB∗‖2 are of the same order. Line 7 in Algorithm 1
requires an analysis of perturbed quadratic regression (Lemma 7), which guarantees that

‖Q̂− SQ∗S>‖F = O((H(dy + du)dx)
21/2T−1/2 log4(T/p)).

Hence, ‖Â−SA∗S>‖2, ‖B̂−SB∗‖2 and ‖Q̂−SQ∗S>‖2 are allO((H(dy + du)dx)21/2T−1/2 log4(dxT/p)).

Lastly, we invoke the result on certainty equivalent LQR in (Mania et al., 2019) to certify the
suboptimality gap of K̂ obtained from (Â, B̂, Q̂, R∗). This certainty equivalent controller can also
be replaced by a robust one (Dean et al., 2020). Let K∗′ denote the optimal controller under the
normalized parameterization. Then, for a large enough burn-in period, the certainty-equivalent
controller satisfies that ‖K̂ − K∗′‖2 is of the same order as the system parameter errors. Note
that policy K∗M∗ in the original system is independent of the latent model parameterization,
and we have that ‖K̂M̂− K∗M∗‖2 is of the same order.
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Figure 1: Optimality of the learned policy versus the length of the trajectory. Each dot averages
the results of five independent runs.

5 Numerical results

Although this work is theoretical in nature, we conduct preliminary numerical experiments
by testing CoReL on a mass-spring-damper system, with mass 1 kg, stiffness 10 N/m and
damping coefficient 100 kg/s. We discretize time with the forward Euler method using 0.01
s intervals. The state of the system is the position and the velocity of the mass, with the
observation being the position only. The scalar control input is the external force. We take
Q = I and R = 1 in the cost function. We set H = 5 and measure the performance by the
distance between K̂M̂ and K∗M∗. In all experiments, we warm up the system by 1000 steps.

The simulation results are summarized in Figure 1. In general, we observe the decrease
of the distance to the optimal policy as the length of the trajectory increases. The system has
dx = 2. Besides dz = 2, we experiment with dz = 1 and dz = 3 to examine the impact of
dimension mismatch. In this example, we see that dz = 1 does not produce a meaningful
policy and dz = 3 performs better than the dz = 2 baseline. We note that the these results
are preliminary, and this “blessing of overparameterization” in the latent state space is worth
further investigation.

6 Conclusion and future work

We studied direct latent model learning for solving unknown infinite-horizon time-invariant
LQG control. We established finite-sample guarantees for two methods, which differ in whether
the latent dynamics is learned explicitly by minimizing the transition prediction errors, or im-
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plicitly by using the transition for future predictions, with the latter being closer to that used
in MuZero (Schrittwieser et al., 2020). For MuZero-style latent model learning, our analysis
identifies a coordinate misalignment problem in the latent state space, suggesting the value
of multi-step future prediction. A limitation of this work is that we only consider state repre-
sentation based on truncated histories, i.e., frame stacking, as used in MuZero; the recursive
form of the representation function, as in the Kalman filter, is also used empirically (Ha and
Schmidhuber, 2018; Hafner et al., 2019a), and might be worth further investigation.

Many questions remain to be answered in representation learning for control. Provable
generalization of direct latent model learning to nonlinear observation channels or dynamics is
a natural consideration. Moreover, with the ubiquity of visual perception in real-world control
systems, what if we have a time-varying observation function or multiple observation functions,
modeling images taken from different angles? In reality, most of the time we do not have a
well-defined cost function; learning task-relevant state representations from demonstrations is
another intriguing direction.
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A Additional related work

(Oymak and Ozay, 2019) studies the identification of partially observable linear dynamical
systems from a single trajectory, which presents a finite-sample analysis of identifying the
Markov parameter and a perturbation analysis of the Ho-Kalman algorithm (Ho and Kalman,
1966). (Simchowitz et al., 2019) relaxes the stability requirement to marginal stability by using
prefiltered least squares to identify the Markov parameter. The method in (Zheng and Li, 2020)
applies to unstable systems but requires multiple trajectories. Since the Markov parameter
maps control input histories to observations, these methods do not work with costs and use the
Markov parameter as an intermediate step to identify the system. By contrast, our methods,
entirely driven by the costs and closely connected with empirical methods, directly learn the
representation function and the latent model. Directly learning the latent model connects our
work to the identification of fully observable linear dynamical systems. (Simchowitz et al., 2018)
introduces small-ball conditions to handle correlated data and characterizes the statistical rates
for stable and unstable systems, both proving to be useful for our analysis.

Online control of partially observable linear dynamical systems is considered in (Lale et al.,
2020, 2021) for stochastic noises and in (Simchowitz et al., 2020) for nonstochastic noises. (Zheng
et al., 2021) considers end-to-end sample complexity and is closest to our setup. All these
methods rely on the estimation of Markov parameters. For a discussion of the literature in
more detail and breadth, we refer the reader to the recent survey (Tsiamis et al., 2022).

B Additional discussions on CoSysId

In CoSysId (Algorithm 2), the covariates of quadratic regression in (3.6) are ([ht; ut])t≥H. One
may wonder if we can pursue an alternative approach by fixing M to be M̂, and using ([ẑt; ut])t≥H

as covariates, which have a much lower dimension, though the two quadratic regressions can-
not be solved in parallel anymore. Specifically, the new quadratic regression we need to solve
is given by

N̂2, b̂2 ∈ argmin
N2=N>2 ,b2

∑T+H−1
t=H

(
‖[ẑt; ut]‖2

N2
+ b2 − ct+1

)2,

where ẑt = M̂ht is an approximation of Sz∗t . The ground truth for N̂2 is N∗2 = [SA∗S>, SB∗]>[SA∗S>, SB∗],
so its approximate factorization recovers [S2A∗S>, S2B∗] for some orthonormal matrix S2. In a
similar way to CoSysId, we still need to fit an alignment matrix S3 = SS>2 to align the coordi-
nates. Let Ã, B̃ denote the system parameters recovered from N̂2. The linear regression we now
need to solve is from ([Ã, B̃][ẑt; ut])

T+H−1
t=H to (ẑt+1)

T+H−1
t=H . However, without further assump-

tions, [A∗, B∗] does not necessarily have full row rank, and hence, neither does [Ã, B̃], in which
case recovering the entire S3 is impossible.

On the other hand, for CoSysId (Algorithm 2), the ground truth of M̂1 is M∗1 = [A∗M∗, B∗],
which is guaranteed to have full row rank by the same argument as the proof of Proposition 2,
since M∗1 [ht; ut] estimates z∗t+1, which has full-rank covariance. Hence, recovering S0 = SS>1
is feasible.
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C Auxiliary results

C.1 Basic inequalities involving random vectors

Lemma 3. Let x and y be random vectors defined on the same probability space. Then, ‖E[xy>]‖2
2 ≤

‖E[xx>]‖2 · ‖E[yy>]‖2.

Proof. Let dx, dy be the dimensions of the values of x, y, respectively. For any vectors v ∈ Rdx ,
w ∈ Rdy , by the Cauchy-Schwarz inequality,

(v>E[xy>]w)2 = (E[v>xy>w])2

≤ E[(v>x)2] ·E[(w>y)2]

= E[v>xx>v] ·E[w>yy>w]

= (v>Exx>v) · (w>E[yy>]w).

Taking the maximum over v, w on both sides subject to ‖v‖, ‖w‖ ≤ 1 gives

‖E[xy>]‖2
2 ≤ ‖E[xx>]‖2 · ‖E[yy>]‖2,

which completes the proof.

Lemma 4 ((Tian et al., 2022, Lemma 8)). Let x, y be random vectors of dimensions dx, dy, respectively,
defined on the same probability space. Then, ‖Cov([x; y])‖2 ≤ ‖Cov(x)‖2 + ‖Cov(y)‖2.

C.2 Lower bound about Gaussian quadratic forms

Lemma 5. Let z1, z2, . . . , zd be independent standard Gaussian random variables. Let v = [v1, v2, . . . , vd+1]
> ∈

Sd be a (d + 1)-dimensional unit vector. There exists an absolute constant a > 0, such that

infv∈Sd E
[∣∣∣vd+1 + ∑d

i=1 viz2
i

∣∣∣] ≥ ad−3/2.

Proof. Let us consider the value of vd+1. Since E[z2
i ] = 1 for all 1 ≤ i ≤ d,

E
[∣∣∣∑d

i=1 viz2
i

∣∣∣] ≤∑d
i=1 |vi| ≤

√
d ∑d

i=1 v2
i ≤

√
d(1− v2

d+1).

Then,

E
[∣∣∣vd+1 + ∑d

i=1 viz2
i

∣∣∣] ≥ |vd+1| −E
[∣∣∣∑d

i=1 viz2
i

∣∣∣] ≥ |vd+1| −
√

d(1− v2
d+1).

Hence, if |vd+1| ≥ 2
√

d/(4d + 1), we have
√

d(1− v2
d+1) ≤ |vd+1|/2. It follows that

E
[∣∣∣vd+1 + ∑d

i=1 viz2
i

∣∣∣] ≥ |vd+1|
2
≥
√

d
4d + 1

≥ 1√
5

.
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Below we consider the case where |vd+1| < 2
√

d/(4d + 1). Let sign(·) denote the sign function.
Let I+ := {i : sign(vi) = 1, 1 ≤ i ≤ d} and I− := {i : sign(vi) = −1, 1 ≤ i ≤ d} be the index
sets of positive and negative values among (vi)

d
i=1. Then,

E
[∣∣∣vd+1 + ∑d

i=1 viz2
i

∣∣∣] = E
[∣∣∣vd+1 + ∑d

i=1 |vi| sign(vi)z2
i

∣∣∣]
= E

[∣∣∣vd+1 + ∑i∈I+ |vi|z2
i −∑j∈I− |vj|z2

j

∣∣∣].
For a given v, since (z2

i )
d
i=1 have identical distributions, E

[∣∣∣vd+1 + ∑i∈I+ |vi|z2
i − ∑j∈I− |vj|z2

j

∣∣∣]
has the same value under permutations of (vi)i∈I+ and (vj)j∈I− . Summing over all the permu-
tations of (vi)i∈I+ and (vj)j∈I− gives

dE
[∣∣∣vd+1 + ∑d

i=1 viz2
i

∣∣∣] ≥ E
[∣∣∣d · vd+1 +

(
∑i∈I+ |vi|

)
∑i∈I+ z2

i −
(
∑j∈I− |vj|

)
∑j∈I− z2

j

∣∣∣].
Hence,

E
[∣∣∣vd+1 + ∑d

i=1 viz2
i

∣∣∣] ≥ 1
d

(
∑d

i=1 |vi|
)

E
[∣∣∣d · vd+1 + ∑d

i=1 sign(vi)z2
i

∣∣∣]
Since ∑d

i=1 |vi| ≥ (∑d
i=1 v2

i )
1/2 = (1− v2

d+1)
1/2, we have

E
[∣∣vd+1 + ∑d

i=1 viz2
i
∣∣] ≥ (1− v2

d+1)
1/2

d
infw∈{±1}d E

[∣∣d · vd+1 + ∑d
i=1 wiz2

i
∣∣].

It remains to lower bound infw∈{±1}d E
[∣∣d · vd+1 + ∑d

i=1 wiz2
i

∣∣]. By symmetry, for any pair
wi 6= wj, the expectation remains the same if we exchange zi and zj. Hence, for any random
variable x,

E[|x + zi − zj|] =
1
2
(E[|x + zi − zj|] + E[|x + zi − zj|]) ≥ E[|x|].

We shall apply this symmetry trick in the following to cancel terms with opposite signs. Let p
denote the number of +1’s and q denote the number of −1’s in w, such that p + q = n. If p 6= q,
by the symmetry trick,

E
[∣∣d · vd+1 + ∑d

i=1 wiz2
i
∣∣] ≥ E

[∣∣d · vd+1 + ∑|p−q|
i=1 z2

i
∣∣] ≥ Var

(
∑|p−q|

i=1 z2
i
)
= Ω(1).

If p = q, again, the symmetry trick yields

E[|d · vd+1 + ∑d
i=1 wiz2

i |] ≥ E[|d · vd+1 + z2
1 − z2

2|] ≥ Var
(
z2

1 − z2
2
)
= Ω(1).

Hence, regardless of p and q, we have infw∈{±1}d E[|d · vd+1 + ∑d
i=1 wiz2

i |] = Ω(1). Then,

E
[∣∣∣vd+1 + ∑d

i=1 viz2
i

∣∣∣] ≥ Ω(1) ·
(1− v2

d+1)
1/2

d
.

Since |vd+1| < 2
√

d/(4d + 1),

E
[∣∣∣vd+1 + ∑d

i=1 viz2
i

∣∣∣] = Ω(1) · 1√
4d + 1 · d

= Ω(d−3/2).
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Hence, over all, we have

infv∈Sd E
[∣∣∣vd+1 + ∑d

i=1 viz2
i

∣∣∣] ≥ ad−3/2.

From the proof, we can see that without vd+1, we have the improved bound infv∈Sd−1 E[|∑d
i=1 viz2

i |] =
Ω(d−1).

Below we use Lemma 5 to prove Lemma 2.

Proof of Lemma 2. Let y := Σ−1/2x. Then y is a standard Gaussian random vector, and x>Ax =

y>Σ1/2AΣ1/2y. Let U>ΛU be the eigenvalue decomposition of Σ1/2AΣ1/2. Then,

x>Ax = y>U>ΛUy = z>Λz,

where z := Uy is still a standard Gaussian random vector.

By the unitary invariance of the Frobenius norm,

‖Λ‖F = ‖U>ΛU‖F = ‖Σ1/2AΣ1/2‖F ≥ λmin(Σ)‖A‖F.

Hence,

‖Λ‖2
F + b2 ≥ λ2

min(Σ)‖A‖2
F + b2 ≥ λ2

min(Σ) ∧ 1.

Therefore, by Lemma 5, there exists an absolute constant a > 0, such that

inf‖A‖2
F+b2=1 E[|x>Ax + b|] ≥ inf‖Λ‖2

F+b2≥λ2
min(Σ)∧1 E[|z>Λz + b|] ≥ a(λmin(Σ) ∧ 1)d−3/2.

C.3 Sum of sub-Weibull martingale difference sequences

To upper bound ∑T+H−1
t=H ftet in the analysis of quadratic regression (see §D), one possible ap-

proach (Simchowitz et al., 2018; Oymak and Ozay, 2019; Tsiamis et al., 2022) is to use bounds
for self-normalized martingales (Abbasi-Yadkori et al., 2011), but the standard self-normalized
martingale lemma assumes the noises (et)t≥H to be sub-Gaussian. (Fan et al., 2012, 2017) study
the sum of martingale difference sequences with sub-Weibull distributions, based on which we
prove Lemma 6.

Lemma 6. Let (ηt)t≥1 be a martingale difference sequence adapted to filtration (Ft)t≥1. Assume
ηt | Ft−1 is θ-sub-Weibull with ‖ηt | Ft−1‖ψθ

≤ K for θ > 0. Then with probability at least 1− p,
there exist constants aθ , a′θ > 0, such that as long as T ≥ aθ ,

∑T
t=1 ηt ≤ a′θK

√
T(log(T/p))1+θ−1

.
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Proof. By the definition of sub-Weibull distributions, E[exp(|ηt/K|θ) | Ft−1] ≤ 2. Define εt =

ηt/K. Then by the properties of sub-Weibull distributions, there exists constant aθ > 0, such
that E[ε2

t | Ft−1] ≤ aθ (Zhang and Wei, 2022). Hence, (εt)t≥1 satisfies the assumptions required
in (Fan et al., 2017, Theorem 3.2) for α = θ/(θ + 1). Taking (φt)t≥1 in (Fan et al., 2017, Theorem
3.2) to be ones, we have for any x > 0,

P
(

∑T
t=1 εt ≥ x

√
T
)
≤ exp

(
− x2

2(aθ + x1+ 1
θ+1 /3)

)
+ 2T exp

(
− x

θ
θ+1

)
.

Note that

x2

2(aθ + x1+ 1
θ+1 /3)

=
x

θ
θ+1

2/3 + 2aθx−1− 1
θ+1
≥ x

θ
θ+1 ,

if 2aθx−1− 1
θ+1 ≤ 1/3, that is, x ≥ (6aθ)

θ+1
θ+2 . Then, as long as x ≥ 6aθ ,

P
(

∑T
t=1 εt ≥ x

√
T
)
≤ 3T exp

(
− x

θ
θ+1

)
.

Hence, for any p ∈ (0, 1),

P
(

∑T
t=1 εt ≥

√
T(log(3T/p))1+θ−1

)
≤ p.

Therefore, there exists a constant a′θ > 0, such that as long as T ≥ 3 exp((6aθ)
θ

θ+1 ), with proba-
bility at least 1− p,

∑T
t=1 ηt = ∑T

t=1 Kεt ≤ a′θK
√

T(log(T/p))1+θ−1
.

Taking 3 exp((6aθ)
θ

θ+1 ) as the new aθ completes the proof.

C.4 Proposition on multi-step cumulative costs

The following proposition adapts (Tian et al., 2022, Proposition 3) to our LTI setting, which is
important for analyzing CoReL and CoReDyL.

Proposition 3. Define filtration Ft := σ(x0, v0, u0, w0, v1, . . . , ut−1, wt−1, vt). Let (z∗′t )t≥0 be the state
estimates generated by the Kalman filter under the normalized parameterization, adapted to (Ft)t≥0. If
we apply ut ∼ N (0, σ2

u I), then for any t ≥ 0,

ct := ∑t+dx−1
τ=t (cτ − ‖uτ‖2

R∗) = ‖z∗′t ‖2 + b∗′ + e′t,

where b∗′ = O(dx) is a positive constant, and e′t | Ft−1 is a zero-mean subexponential random variable
with ‖e′t | Ft−1‖ψ1 = O(d3/2

x ).

Proof. By Proposition 1, z∗′t+1 = A∗′z∗′t + B∗′ut + L∗′i′t+1, where L∗′, i′t+1 are the Kalman gain
and the innovation under the normalized parameterization, respectively. Under Assumption 1,
(i′t)t≥1 are Gaussian random vectors whose covariances have O(1) operator norms, and L∗′
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has O(1) operator norm (Zhang and Zhang, 2021). Hence, The covariance of L∗′i′t+1 has O(1)
operator norm. Since ut ∼ N (0, σ2

u I), jt := B∗′ut + i′t can be viewed as a Gaussian noise vector
independent of Ft−1, whose covariance has O(1) operator norm. By Proposition 1,

ct = ‖z∗′t ‖2
Q∗′ + ‖ut‖2

R∗ + b∗ + et,

where b∗ := E[‖z∗′t − x′t‖2
Q∗′ ] and et := γt + ηt = ‖z∗′t − x′t‖2

Q∗′ − b∗ +
〈
z∗′t , x′t − z∗′t

〉
Q∗′ . Since

the state estimation error z∗′t − x′t is a zero-mean Gaussian random vector and independent of
Ft−1, et | Ft−1 is a zero-mean subexponential random variable with ‖et‖ψ1 = O(d1/2

x ). Then,
for τ ≥ t + 1,

z∗′τ = (A∗′)τ−tz∗′t + ∑τ−1
s=t (A∗′)τ−s js := (A∗′)τ−tz∗′t + j′τ,t,

where j′τ,t is a Gaussian random vector independent of Ft−1 and j′τ,t | Ft−1 has zero mean and
O(1) covariance norm due to stability (Assumption 1.1). Therefore,

ct = ∑t+dx−1
τ=t cτ

= ∑t+dx−1
τ=t

(
‖(A∗′)τ−tz∗′t + j′τ,t‖2

Q∗′τ
+ ‖uτ‖2

R∗τ + b∗ + eτ

)
= (z∗′t )

>
(

∑t+dx−1
τ=t ((A∗′)τ−t)>Q∗′t (A∗′)τ−t

)
z∗′t + ∑t+dx−1

τ=t ‖uτ‖2
R∗τ

+ ∑t+dx−1
τ=t (‖j′τ,t‖2

Q∗′τ
+ (j′τ,t)

>Q∗′τ (A∗′)τ−tz∗′t + b∗ + eτ)

= ‖z∗′t ‖2 + ∑t+dx−1
τ=t ‖uτ‖2

R∗τ + b∗′ + e′t,

where ∑t+dx−1
τ=t ((A∗′)τ−t)>Q∗′t (A∗′)τ−t = I is due to the normalized parameterization, b∗′ :=

∑t+dx−1
τ=t (b∗ + E[‖j′τ‖2

Q∗′τ
]) = O(dx), and

e′t := ∑t+dx−1
τ=t

(
‖j′τ‖2

Q∗′τ
−E[‖j′τ‖2

Q∗′τ
] + (j′τ)

>Q∗′τ (A∗′)τ−tz∗′t + eτ

)
satisfies that e′t | Ft−1 has zero mean and is subexponential with ‖e′t‖ψ1 = O(d3/2

x ).

D Quadratic regression bound

The following quadratic regression bound is at the core of proving Theorem 2. Its proof builds
on a new persistency of excitation result (Lemma 1) and the concentration of sub-Weibull mar-
tingale different sequences (Lemma 6). As a caveat, the ht, ct,Ft in Lemma 7 and its proof are a
slight abuse of notation, which denote different variables than the rest of the paper. Hence, the
indices start with t = 1, rather than t = H in the CoReL and CoReDyL algorithms.

Lemma 7. Let (h∗t )t≥1 be a sequence of d-dimensional Gaussian random vectors adapting to filtra-
tion (Ft)t≥1 with ‖E[h∗t (h

∗
t )
>]‖1/2

2 ≤ σ. Define random variable ct = (h∗t )
>N∗h∗t + b∗ + et, where

N∗ ∈ Rd×d is a positive semidefinite matrix, b∗ ∈ R is a constant, and et | Ft−1 is zero-mean,
subexponential with ‖et | Ft−1‖ψ1 ≤ E. Assume σ and ‖N∗‖2 are O(1). Define ht = h∗t + δt,
where the noise vector δt can be correlated with h∗t and its `2 norm is sub-Gaussian with E[‖δt‖] ≤ ε,
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‖‖δt‖‖ψ2 ≤ ε. Assume that ([svec(h∗t (h
∗
t )
>); 1])t≥1 satisfies (k, γ2 I, q)-BMSB condition and ε ≤

min(σd1/2, a0γσ−1d−1 log−2(T/p)) for some absolute constant a0 > 0. Consider

(N̂, b̂) ∈ argmin
N=N>,b

∑T
t=1(ct − ‖ht‖2

N − b)2. (D.1)

Then, as long as T ≥ a1kd5 log(d/p) for some dimension-free constant a1 > 0, we have that with
probability at least 1− p,

‖N̂ − N∗‖F = O
(
ε(γq)−1d1/2 log(T/p) + (γq)−2dET−1/2 log3(T/p)

)
,

where σ, E and ‖N∗‖2 are problem-dependent constants hidden in O(·).

Proof. Regression (D.1) can be written as

argmin
svec(N),b

∑T
t=1

(
ct − svec(hth>t )

>svec(N)− b
)2.

Let ft := svec(hth>t ) denote the covariates and f t := [ ft; 1] denote the extended covariates.
Define f ∗t and f

∗
t similarly by replacing ht with h∗t . Then, regression (D.1) can be written as

argmin
svec(N),b

∑T
t=1

(
ct − f>t svec(N)− b

)2. (D.2)

Let F := [ f 1, f 2, . . . , f T]
> be the T × d(d+1)

2 matrix whose tth row is f>t . Define F∗ similarly by
replacing f t by f

∗
t . Solving linear regression (D.2) gives

F>F[svec(N̂); b̂] = ∑T
t=1 f tct.

Substituting ct = ( f
∗
t )
>[svecN∗; b∗] + et into the above equation yields

F>F[svec(N̂); b̂] = F>F∗[svec(N∗); b∗] + F>ξ,

where ξ denotes the vector whose tth element is et. Rearranging the terms, we have

F>F[svec(N̂ − N∗); b̂− b∗] = F>(F∗ − F)[svec(N∗); b∗] + F>ξ. (D.3)

Next, we show that λmin(F>F) = Ω(γ2q2T), which we achieve by showing ( f t)t≥1 satisfies
the BMSB condition. By our assumption, ( f

∗
t )t≥1 satisfies (k, γ2 I, q)-BMSB condition, meaning

that for any fixed unit vector v ∈ R
d(d+1)

2 +1, it holds almost surely that

1
k ∑k

i=1 P
(∣∣〈 f

∗
t+i, v

〉∣∣ ≥ γ | Ft
)
≥ q.

For any fixed unit vector v ∈ R
d(d+1)

2 +1, we have∣∣〈 f t, v
〉∣∣ = ∣∣〈 f

∗
t , v
〉
+
〈

f t − f
∗
t , v
〉 ∣∣ ≥ ∣∣〈 f

∗
t , v
〉∣∣− ∣∣〈 f t − f

∗
t , v
〉∣∣ ≥ ∣∣〈 f

∗
t , v
〉∣∣− ‖ f t − f

∗
t ‖.
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For all 1 ≤ t ≤ T, since ‖ f t − f
∗
t ‖ = ‖ ft − f ∗t ‖ = ‖hth>t − h∗t (h

∗
t )
>‖F = O(εσd log2(T/p)), there

exists an absolute constant a0 > 0, such that as long as ε ≤ a0γ

σd log2(T/p)
, ‖ f t − f

∗
t ‖ ≤ γ/2. It

follows that

1
k ∑k

i=1 P(|
〈

f t+i, v
〉
| ≥ γ/2 | Ft) ≥

1
k ∑k

i=1 P(|
〈

f
∗
t+i, v

〉
| ≥ γ | Ft) ≥ q,

which means that ( f t)1≤t≤T is (k, γ2 I/4, q)-BMSB. Following the analysis in (Simchowitz et al.,
2018, Appendix D), by lower bounding infv:‖v‖=1 ∑T

t=1 〈v, ft〉2 using a covering argument (Sim-
chowitz et al., 2018, Lemma 4.1), we can show that for a given p ∈ (0, 1), as long as T ≥
a1kd5 log(d/p) for some dimension-free constant a1 > 0, then with probability at least 1− p,
we have

λmin

(
∑T

t=1 f t f
>
t

)
= Ω(γ2q2T).

Hence, we have λmin(F>F) = Ω(γ2q2T).

Now we return to (D.3). By inverting F>F, we obtain

‖[svec(N̂ − N∗); b̂− b∗]‖ = ‖F†
(F∗ − F)[svec(N∗); b∗] + F†

ξ‖

≤ ‖F†
(F∗ − F)[svec(N∗); b∗]‖︸ ︷︷ ︸

(a)

+ ‖F†
ξ‖︸ ︷︷ ︸

(b)

. (D.4)

Term (a) is upper bounded by

σmin(F)−1‖(F∗ − F)[svec(N∗); b∗]‖
= O(σmin(F)−1)‖(F∗ − F)svec(N∗)‖
= O((γq)−1T−1/2)‖(F∗ − F)svec(N∗)‖.

Using arguments similar to those in (Mhammedi et al., 2020, Section B.2.13), we have

‖(F∗ − F)svec(N∗)‖2 = ∑T
t=1

〈
svec(h∗t (h

∗
t )
>)− svec(hth>t ), svec(N∗)

〉2

= ∑T
t=1

〈
h∗t (h

∗
t )
> − hth>t , N∗

〉2

F

≤ ‖N∗‖2
2 ∑T

t=1 ‖h
∗
t (h
∗
t )
> − hth>t ‖2

∗
(i)
≤ 4‖N∗‖2

2 ∑T
t=1 ‖h

∗
t (h
∗
t )
> − hth>t ‖2

2,

where (i) follows from the fact that the matrix h∗t (h
∗
t )
> − hth>t has at most rank two. Note that

‖h∗t (h∗t )> − hth>t ‖2 = ‖h∗t (h∗t − ht)
> + (h∗t − ht)h>t ‖2 ≤ (‖h∗t ‖+ ‖ht‖)‖δ‖.

Since h∗t is Gaussian with ‖E[h∗t (h
∗
t )
>]‖1/2

2 ≤ σ, ‖h∗‖ is sub-Gaussian with its mean and sub-
Gaussian norm bounded by O(σd1/2). Since ‖δ‖ is sub-Gaussian with its mean and sub-
Gaussian norm bounded by ε ≤ σd1/2, we conclude that ‖h∗(h∗)> − hh>‖2 is subexponential
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with its mean and subexponential norm bounded by O(εσd1/2). Hence, with probability at
least 1− p,

‖h∗(h∗)> − hh>‖2
2 = O(ε2σ2d‖ log2(T/p)).

Therefore, term (a) in (D.4) is bounded by

O
(
(γq)−1T−1/2εσ‖N∗‖2d1/2T1/2 log(T/p)

)
= O((γq)−1d1/2ε log(T/p)).

Now we consider term (b) in (D.4):

(b) = ‖F†
ξ‖ ≤ λmin(F>F)−1‖F>ξ‖ = O((γq)−2T−1)

∥∥∥∑T
t=1 f tet

∥∥∥.

Let [ f t]i denote the ith element of vector f t. Since ‖[ f t]i | Ft−1‖ψ1 = O(1) and ‖et | Ft−1‖ψ1 ≤
E, the product [ f t]iet | Ft−1 is 1

2 -sub-Weibull, with the sub-Weibull norm being O(E). By
Lemma 6, with probability at least 1− p,

∑T
t=1[ f t]iet = O(ET1/2 log3(T/p)).

Then, since ∑T
t=1 f tet has d(d + 1)/2 + 1 components,∥∥∥∑T

t=1 f tet

∥∥∥ = O(dET1/2 log3(T/p)).

Hence, term (b) in (D.4) is bounded by

O((γq)−2dET−1/2 log3(T/p)).

Finally, combining the bounds on (a) and (b), we show that as long as T ≥ a1kd5 log(d/p),
with probability at least 1− p,

‖[svec(N̂ − N∗); b̂− b∗]‖ = O(ε(γq)−1d1/2 log(T/p) + (γq)−2dET−1/2 log3(T/p)).

D.1 Persistency of excitation

Below we prove Lemma 1, which claims that ([ ft; 1])t≥H satisfies the (k, γ2 I, q)-BMSB condition.
With some additional arguments (Simchowitz et al., 2018; Matni and Tu, 2019), this implies that

λmin

(
∑T+H−1

t=H [ ft; 1][ f>t , 1]
)
= Ω(γ2q2T), establishing the persistency of excitation.

Proof of Lemma 1. Since svec is a bijection, every vector w ∈ Rdh(dh+1)/2 corresponds to a sym-
metric matrix D ∈ Rdh×dh with Frobenius norm ‖w‖. Then, for any unit vector v = [w; s] with
w ∈ Rdh(dh+1)/2 and s ∈ R,〈

f t+i, v
〉
= 〈 ft+i, w〉+ s =

〈
svec(ht+ih>t+i), svec(D)

〉
+ s = h>t+iDht+i + s.
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Take Γ = γ2 I for some γ > 0 to be specified later. Then, ‖v‖Γ = γ. It suffices to show that for
i > G for some G > 0,

P(|h>t+iDht+i + s| ≥ γ | Ft) ≥ q,

since if so, we have

1
2G ∑2G

i=1 P(|h>t+iDht+i + s| ≥ γ | Ft) ≥
1

2G ∑2G
i=G+1 P(|h>t+iDht+i + s| ≥ γ | Ft) ≥ q/2,

which means ( f t)t≥H is (2G, γ2 I, q/2)-BMSB.

Now let us take a close look at

ht+i = [y(t+i−H+1):(t+i); u(t+i−H):(t+i−1)].

Since

yt+i = C∗(A∗)ixt + ∑i
j=1 C∗(A∗)j(B∗ut+i−j + wt+i−j) + vt+i,

yt+i | Ft is Gaussian with mean C∗(A∗)ixt and covariance determined by ∑i
j=1 C∗(A∗)j(B∗ut+i−j +

wt+i−j) + vt+i, where we note that vt+i is independent of all other random variables and has
full-rank covariance. Hence, for i > H, ht+i | Ft is Gaussian and has full-rank covariance. Then
intuitively, since ‖D‖F = 1, |h>t+iDht+i| | Ft is a well-behaved random variable that can exceed
some γ > 0 with a positive probability q. Formally, let µt,i := E[ht+i | Ft]. By Lemma 2, for
i > H, there exists some absolute constant a > 0, such that

E[|(ht+i − µt,i)
>D(ht+i − µt,i) + s| | Ft] ≥ a min{σu, σv}d−3/2

h .

By triangle inequality, we have

|(ht+i − µt,i)
>D(ht+i − µt,i) + s| = |h>t+iDht+i + µ>t,iDµt,i − 2h>t+iDµt,i + s|

≤ |h>t+iDht+i + s|+ |µ>t,iDµt,i|+ 2|h>t+iDµt,i|.

Hence,

E[|h>t+iDht+i + s| | Ft] ≥ a min{σu, σv}d−3/2
h −E[|µ>t,iDµt,i|+ 2|h>t+iDµt,i| | Ft].

Now we argue that for large enough i, E[|µ>t,iDµt,i|+ 2|h>t+iDµt,i|] is negligible. Since matrix
A∗ is stable, with probability at least 1− p, ‖xt‖ = O(d1/2

x log(T/p)) for all t ≥ 0. Hence,

‖C∗(A∗)ixt‖ = O(α(A∗)ρ(A∗)id1/2
x log(T/p)),

where we recall that α(A∗) := supk≥0 ‖(A∗)k‖2ρ(A∗)−k and ‖C∗‖2, ‖A∗‖2 are hidden in O(·).
Then, for i > H,

E[|µ>t,iDµt,i|+ 2|h>t+iDµt,i| | Ft] = |
〈
µt,iµ

>
t,i, D

〉
F|+ 2E[|

〈
µt,ih>t+i, D

〉
F| | Ft]

≤ ‖µt,iµ
>
t,i‖F · ‖D‖F + 2E[‖µt,ih>t+i‖F · ‖D‖F | Ft]

= ‖µt,i‖2 + 2‖µt,i‖ ·E[‖ht+i‖ | Ft].
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By definition, µt,i is the concatenation of (C∗(A∗)jxt)i−H+1≤j≤i and zero vectors. Hence,

‖µt,i‖ = O(d1/2
h α(A∗)ρ(A∗)i log(T/p)).

Choose H ≥ a1 log(dhα(A∗) log(T/p))
log(ρ(A∗)−1)

for some dimension-free constant a1 > 0, such that for i > 2H,
we have

‖µt,i‖2 + 2‖µt,i‖ ·E[‖ht+i‖ | Ft] ≤ a min{σu, σv}d−3/2
h /2.

Then, we have the desired lower bound that

E[|h>t+iDht+i + s| | Ft] ≥ a min{σu, σv}d−3/2
h /2.

On the other hand, since

|h>t+iDht+i + s| =
∣∣〈D, ht+ih>t+i

〉
F + s

∣∣ ≤ ‖D‖F‖ht+ih>t+i‖F + |s| ≤ h>t+iht+i + |s|,

we have E[|h>t+iDht+i + s|2 | Ft] ≤ 2E[‖ht+i‖4 | Ft] + 2s2. Since ‖ht+i‖ | Ft is sub-Gaussian with

‖‖ht+i‖ | Ft‖ψ2 = O(‖E[ht+ih>t+i | Ft]‖1/2
2 ) = O(1),

E[|h>t+iDht+i + s|2 | Ft] = O(1). By the Paley-Zygmund inequality, for β ∈ [0, 1] we have

P(|h>t+iDht+i + s| ≥ βa min{σu, σv}d−3/2
h /2 | Ft) = Ω((1− β)2a2d−3

h ),

where the dependence on σu, σv is hidden in Ω(·). By taking β = 1/2, we can see that ( ft)t≥H

satisfies the (k, γ2 I, q)-BMSB condition for k = 4H, γ = Θ(d−3/2
h ) and q = Θ(d−3

h ).

E Linear system identification with noisy measurements

Identifying the time-invariant latent dynamics involves linear regression with correlated data
and noisy measurements. The following Lemma 8 extends the previous linear system identifica-
tion result in (Simchowitz et al., 2018) to the case with noises in both input and output variables.
In Lemma 8, γ and q are treated as dimension-free constants (in contrast to Lemma 7), which is
indeed the case in our application of Lemma 8 to (z∗t )t≥H in analyzing SysId (3.3) for CoReL in
§F.1, and in analyzing alignment matrix estimation (3.7) in Algorithm 2 for CoReDyL in §F.2.
Note that the bound in Lemma 8 is worse than that in the time-varying setting in (Tian et al.,
2022), due to the treatment of correlated data.

Lemma 8. Let (x∗t )t≥1 be a sequence of d1-dimensional Gaussian random vectors adapted to a filtration
(Ft)t≥1 with ‖E[x∗t (x∗t )

>]‖1/2
2 ≤ σ. Define y∗t = A∗x∗t + et, where A∗ ∈ Rd2×d1 and et | Ft is

Gaussian with zero mean and ‖E[ete>t ]‖1/2
2 ≤ ε. Define yt = y∗t + δ

y
t and xt = x∗t + δx

t , where the
noise vectors δx

t and δ
y
t can be correlated with x∗t and y∗t , and their `2 norms are sub-Gaussian with

E[‖δx
t ‖] ≤ εx, ‖‖δx

t ‖‖ψ2 ≤ εx and E[‖δy
t ‖] ≤ εy, ‖‖δy

t ‖‖ψ2 ≤ εy. Assume that (x∗t )t≥1 satisfies the
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(k, γ2 I, q)-BMSB condition, εx ≤ a0γ2q2/σ for some absolute constant a0, a1 > 0 and both εx and εy

are O(1). Consider

Â ∈ argmin
A∈Rd2×d1

∑T
t=1 ‖yt − Axt‖2. (E.1)

Then, as long as T ≥ a1kq−1(log(1/p) + d1 log(10/q) + d1 log(σγ−1d1 log(T/p))) for some absolute
constant a1 > 0, we have that with probability at least 1− p,

‖Â− A∗‖2 = O((εx + εy)d1/2
1 log(T/p) + (d2 + d1 log(d1 log(T/p)) + log(1/p))1/2T−1/2).

Proof. Let X ∈ RT×d1 denote the matrix whose tth row is x>t . Define X∗, Y, E, ∆x, ∆y similarly.
To solve the regression problem, we set its gradient to be zero and substitute in Y = X∗(A∗)>+
E + ∆y to obtain

Â(X>X) = A∗(X∗)>X + E>X + ∆>y X. (E.2)

Substituting in X = X∗ + ∆x gives

(Â− A∗)((X∗)>X∗) = A∗(X∗)>∆x − Â(∆>x ∆x + ∆>x X∗ + (X∗)>∆x)

+ E>X∗ + E>∆x + ∆>y X∗ + ∆>y ∆x.
(E.3)

Now we deal with each term on the right-hand side. Since (X∗)>∆x = ∑T
t=1 x∗t (δ

x
t )
>, by the

triangle inequality,

‖(X∗)>∆x‖2 ≤∑T
t=1 ‖x

∗
t (δ

x
t )
>‖2 ≤∑T

t=1 ‖x
∗
t ‖ · ‖δx

t ‖.

Since (x∗t )t≥1 are Gaussian, with probability at least 1− p, ‖x∗t ‖ = O(σd1/2
1 log1/2(T/p)). Since

(‖δx
t ‖)t≥1 are sub-Gaussian with E[‖δx

t ‖] ≤ εx and ‖‖δx
t ‖‖ψ2 ≤ εx, with probability at least

1− p, ‖δx
t ‖ = O(εx log1/2(T/p)). Hence,

‖(X∗)>∆x‖2 = O(εxσd1/2
1 T log(T/p)).

Similarly, with probability at least 1− p,

‖∆>x ∆x‖2 = O(ε2
xT log(T/p)), ‖E>∆x‖2 = O(εεxd1/2

2 T log(T/p)),

‖∆>y X∗‖2 = O(εyσd1/2
1 T log(T/p)), ‖∆>y ∆x‖2 = O(εxεyT log(T/p)).

It remains to bound ‖Â‖2. Notice that with probability at least 1− p,

‖(X∗)>X∗‖2 ≤∑T
t=1 ‖x

∗
t ‖2 = O(σ2d1 log(T/p)T).

Let T0 := a1kq−1(log(1/p) + d1 log(10/q) + d1 log(σγ−1d1 log(T/p))) for some absolute con-
stant a1 > 0. Then, by (Simchowitz et al., 2018, Appendix D), as long as T ≥ T0, with probability
at least 1− p, λmin((X∗)>X∗) = γ2q2T/32. Since X>X = (X∗)>X∗ + ∆>x X∗ + (X∗)>∆x + ∆>x ∆x,

λmin(X>X) ≥ λmin((X∗)>X∗)− ‖∆>x X∗ + (X∗)>∆x + ∆>x ∆x‖2.
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Hence, there exists an absolute constant a0 > 0, such that as long as εx ≤ a0γ2q2/σ, λmin(X>X) =

Ω(γ2q2T), which implies ‖X†‖2 = O(γ−1q−1T−1/2). From (E.2), we have

‖Â‖2 = (‖A∗‖2‖X∗‖2 + ‖E‖2 + ‖∆y‖2)‖X†‖2 = O(γ−1q−1(σ‖A∗‖2 + ε + εy)) = O(1),

where in the last equality we treat γ, q, σ, ε, εy as problem-dependent constants.

Finally, by (Simchowitz et al., 2018, Theorem 2.4), as long as T ≥ T0,

‖E>(X∗)†‖2 = O((d2 + d1 log(d1 log(T/p)) + log(1/p))1/2T−1/2).

Combining all the above individual bounds with the terms on the right-hand side of (E.3),
we have

‖Â− A∗‖2 = O((εx + εy)d1/2
1 log(T/p) + (d2 + d1 log(d1 log(T/p)) + log(1/p))1/2T−1/2).

which completes the proof.

F Proof of the main results

In this section, we prove the sample complexity bounds for CoReL and CoReDyL in Theorem 1,
which is a simplified version of the following Theorem 2. As we shall see, the proofs for the
two algorithms share similar ideas and tools.

Theorem 2. Given an unknown LQG problem satisfying Assumption 1, let M∗′ and (A∗′, B∗′, Q∗′, R∗)
be the optimal state representation function and the true system parameters under the normalized pa-
rameterization. Recall that for a square matrix A, we define α(A) := supk≥0 ‖Ak‖2ρ(A)−k. For
a given p ∈ (0, 1), if we run CoReL or CoReDyL for T ≥ poly(dx, dy, du, log(T/p)), H =

Ω( log(α(A∗)T)
log(ρ(A∗)−1)

+
log(α(A∗)H(dy+du) log(T/p))

log(ρ(A∗)−1)
), and σu = Θ(1), then there exists an orthonormal matrix

S ∈ Rdx×dx , such that with probability at least 1− p, the representation function M̂ satisfies

‖M̂− SM∗′‖2 = O((H(dy + du)dx)
21/2T−1/2 log4(T/p)),

and feedback gain K̂ satisfies

JK̂(SA∗′S>, SB∗′, SQ∗′S>, R∗)− J∗(SA∗′S>, SB∗′, SQ∗′S>, R∗)

= O((H(dy + du)dx)
21(dx ∧ du)T−1 log8(T/p)).

F.1 Proof of Theorem 2 for CoReL

Proof. Define filtration

Ft := σ(x0, v0, u0, w0, v1, . . . , ut−1, wt−1, vt).

By definition, xt, yt ∈ Ft. Hence, ht = [y(t−H+1):t; u(t−H):(t−1)] ∈ Ft and z∗t ∈ Ft.
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Recall that we define ft := svec(hth>t ) and dh = H(dy + du). By Lemma 1, ft is (k, γ2 I, q)-
BMSB for k = 4H, γ = Θ(d−3/2

h ) and q = Θ(d−3
h ). By Proposition 3 and Lemma 7, there exists

some absolute constant a0 > 0, such that as long as T ≥ a0H6(dy + du)5 log(H(dy + du)/p),
with probability at least 1− p,

‖N̂ − N∗‖F = O((γq)−2dhET−1/2 log3(T/p)) = O((H(dy + du))
10d3/2

x T−1/2 log3(T/p)).

By (Tu et al., 2016, Lemma 5.4), there exists an orthogonal matrix S, such that ‖M̂− SM∗‖F is
of the same order of ‖N̂ − N∗‖F.

Recall that z∗t = M∗ht + δt, where δt = (A∗)Hz∗t−H. Then,

‖ẑt − Sz∗t ‖ = ‖(M̂− SM∗)ht − Sδt‖ ≤ ‖M̂− SM∗‖2‖ht‖+ ‖δt‖.

Since ‖ht‖ is sub-Gaussian with E[‖ht‖] = O(d1/2
h ), ‖‖ht‖‖ψ2 = O(d1/2

h ), we have ‖M̂ −
SM∗‖2‖ht‖ is sub-Gaussian with its mean and sub-Gaussian norm bounded by

O((H(dy + du))
21/2d3/2

x T−1/2 log3(T/p)). (F.1)

Notice that ‖δt‖ is sub-Gaussian with mean and sub-Gaussian norm bounded by

O(α(A∗)ρ(A∗)Hd1/2
x ),

which, by our choice of H, is dominated by (F.1). Hence, for all t ≥ H, ‖ẑt − Sz∗t ‖ is sub-
Gaussian with its mean and sub-Gaussian norm bounded by (F.1).

Then, by the noisy linear regression bound (Lemma 8), for T greater than a constant poly-
nomial in the problem parameters, we have

‖[Â, B̂]− S[A∗, B∗]‖2 = O((H(dy + du))
21/2d3/2

x T−1/2 log3(T/p) · d1/2
x log(T/p))

= O((H(dy + du))
21/2d2

xT−1/2 log4(T/p)).

By the noisy quadratic regression bound (Lemma 7) and svec(z∗t (z
∗
t )
>) being (Θ(1), Θ(d−3/2

x ), Θ(d−3
x ))-

BMSB,

‖Q̂− SQ∗S>‖F = O((H(dy + du))
21/2d3/2

x T−1/2 log3(T/p) · d9/2
x d1/2

x log(T/p)

+ d9
xdxd1/2

x T−1/2 log3(T/p))

= O((H(dy + du)dx)
21/2T−1/2 log4(T/p)).

Hence, ‖Â− SA∗S>‖2, ‖B̂− SB∗‖2 and ‖Q̂− SQ∗S>‖2 are all bounded by

O((H(dy + du)dx)
21/2T−1/2 log4(T/p)).

By (Mania et al., 2019), for T greater than a constant that is polynomial in the problem parameters,

‖K̂− K∗S>‖2 = O((H(dy + du)dx)
21/2T−1/2 log4(T/p))

is of the same order, and K̂ satisfies

JK̂(SA∗′S>, SB∗′, SQ∗′S>, R∗)− J∗(SA∗′S>, SB∗′, SQ∗′S>, R∗)

= O((H(dy + du)dx)
21(dx ∧ du)T−1 log8(dxT/p)).
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F.2 Proof of Theorem 2 for CoReDyL

Proof. Define filtration

Ft := σ(x0, v0, u0, w0, v1, . . . , ut−1, wt−1, vt).

By definition, xt, yt ∈ Ft. Hence, ht = [y(t−H+1):t; u(t−H):(t−1)] ∈ Ft and z∗t ∈ Ft.

Recall that we define ft := svec(hth>t ). By Lemma 1, ft is (k, γ2 I, q)-BMSB for k = 4H,
γ = Θ(d−3/2

h ) and q = Θ(d−3
h ). By Proposition 3 and Lemma 7, there exists some absolute

constant a0 > 0, such that as long as T ≥ a0H6(dy + du)5 log(H(dy + du)/p), with probability at
least 1− p,

‖N̂ − N∗‖F = O((H(dy + du))
10d3/2

x T−1/2 log3(T/p)),

‖N̂1 − N∗1 ‖F = O((H(dy + du) + dx)
10d3/2

x T−1/2 log3(T/p)).

By (Tu et al., 2016, Lemma 5.4), there exists orthogonal matrices S, S1, such that ‖M̂− SM∗‖F

and ‖M̂1 − S1M∗1‖F are on the same order of ‖N̂ − N∗‖F and ‖N̂1 − N∗1 ‖F, respectively. Then,

‖B̃− S1B∗‖2 = O((H(dy + du) + dx)
10d3/2

x T−1/2 log3(T/p)).

Since [S1 A∗S>SM∗, S1B∗] = S1M∗1 , by the perturbation bounds of the Moore-Penrose inverse (Wedin, 1973),
we have

‖Ã− S1A∗S>‖2 = O((H(dy + du) + dx)
10d3/2

x T−1/2 log3(T/p)).

To align Ã with SA∗S>, we compute another matrix Ŝ0 by solving the regression (3.7) from
M̂1[ht; ut] to M̂ht+1. Since M̂1[ht; ut] and M̂ht+1 approximate S1z∗t+1 and Sz∗t+1, respectively, (3.7)
is essentially a linear regression that estimates the alignment matrix SS>1 with noisy variables
M̂1[ht; ut] and M̂ht+1. Below we understand the level of the noise terms.

Recall that z∗t = M∗ht + δt, where δt = (A∗)Hz∗t−H. Then,

‖ẑt − Sz∗t ‖ = ‖(M̂− SM∗)ht − Sδt‖ ≤ ‖M̂− SM∗‖2‖ht‖+ ‖δt‖.

Since ‖ht‖ is sub-Gaussian with E[‖ht‖] = O(d1/2
h ), ‖‖ht‖‖ψ2 = O(d1/2

h ), we have ‖M̂ −
SM∗‖2‖ht‖ is sub-Gaussian with its mean and sub-Gaussian norm bounded by

O((H(dy + du))
21/2d3/2

x T−1/2 log3(T/p)). (F.2)

Notice that ‖δt‖ is sub-Gaussian with mean and sub-Gaussian norm bounded by

O(α(A∗)ρ(A∗)Hd1/2
x ),

which, by our choice of H, is dominated by (F.2). Hence, for all t ≥ H, ‖ẑt − Sz∗t ‖ is sub-
Gaussian with its mean and sub-Gaussian norm of the order in (F.2). Similarly, ‖M̂1[ht; ut]−
S1z∗t+1‖ is sub-Gaussian with its mean and sub-Gaussian norm bounded by (F.2).
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Hence, by the noisy linear regression bound (Lemma 8), for T greater than a constant poly-
nomial in the problem parameters, we have

‖Ŝ0 − SS>1 ‖2 = O((H(dy + du) + dx)
21/2d3/2

x T−1/2 log3(T/p) · d1/2
x log(T/p))

= O((H(dy + du) + dx)
21/2d2

xT−1/2 log4(T/p)).

Hence,

‖Â− SA∗S>‖2 = ‖Ŝ0Ã− SS>1 S1A∗S>‖2

= ‖(Ŝ0 − SS>1 )Ã‖2 + ‖SS>1 (Ã− S1A∗S>)‖2

= O((H(dy + du) + dx)
21/2d2

xT−1/2 log4(T/p)),

and ‖B̂− SB∗‖2 has the same order. By the noisy quadratic regression bound (Lemma 7) and
svec(z∗t (z

∗
t )
>) being (Θ(1), Θ(d−3/2

x ), Θ(d−3
x ))-BMSB,

‖Q̂− SQ∗S>‖F

= O((H(dy + du))
21/2d3/2

x T−1/2 log3(T/p) · d9/2
x d1/2

x log(T/p) + d9
xdxd1/2

x T−1/2 log4(T/p))

= O((H(dy + du)dx)
21/2T−1/2 log4(T/p)).

Hence, ‖Â− SA∗S>‖2, ‖B̂− SB∗‖2 and ‖Q̂− SQ∗S>‖2 are all bounded by

O((H(dy + du)dx)
21/2T−1/2 log4(T/p)).

By (Mania et al., 2019), for T greater than a constant polynomial in the problem parameters,

‖K̂− K∗S>‖2 = O((H(dy + du)dx)
21/2T−1/2 log4(T/p))

is of the same order, and K̂ satisfies

JK̂(SA∗′S>, SB∗′, SQ∗′S>, R∗)− J∗(SA∗′S>, SB∗′, SQ∗′S>, R∗)

= O((H(dy + du)dx)
21(dx ∧ du)T−1 log8(dxT/p)),

which completes the proof.
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