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Abstract

We study the problem of state representation learning for control from partial and
potentially high-dimensional observations. We approach this problem via cost-driven
state representation learning, where one learns a dynamical model in some latent state
space by predicting (cumulative) costs. In particular, we establish finite-sample guaran-
tees of finding a near-optimal representation function and a near-optimal controller
using the learned latent model for infinite-horizon time-invariant Linear Quadratic
Gaussian (LQG) control. We study two approaches to cost-driven representation
learning, which differ in whether the transition function of the latent model is
learned explicitly. The first approach has also been investigated in (Tian et al.,
2023), for finite-horizon time-varying LQG. The second approach closely resembles
MuZero, a recent breakthrough in empirical reinforcement learning, in that it learns
latent dynamics implicitly by predicting cumulative costs. A key technical contribu-
tion of this work is to prove persistency of excitation for a new stochastic process
that arises from the analysis of quadratic regression in our approach, which may be
of independent interest.

1 Introduction

Control with a learned latent model has achieved state-of-the-art performance in several rein-
forcement learning (RL) benchmarks, including board games, Atari games, and visuomotor
control (Schrittwieser et al., 2020; Ye et al., 2021; Hafner et al., 2023). To better understand
this machinery in RL, we introduce it to a classical optimal control problem, namely Linear
Quadratic Gaussian (LQG) control, and study its theoretical, in particular, finite-sample per-
formance. Essential to this approach is the learning of two components: a state representation
function that maps an observed history to some latent state, and a latent model that predicts
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the transition and cost in the latent state space. The latent model is usually a Markov decision
process, using which we obtain a policy in the latent space or execute online planning.

What is the correct objective to optimize for learning a good latent model? One popular
choice is to learn a function that reconstructs the observation from the latent state (Hafner et al.,
2019a,b, 2020, 2023). A latent model learned this way is agnostic to control tasks and retains
all the information about the environment. This class of approaches may achieve satisfactory
performance empirically, but are prone to background distraction and control-irrelevant infor-
mation (Fu et al., 2021). The second class of methods learn an inverse model that infers actions
from latent states at different time steps (Pathak et al., 2017; Lamb et al., 2022). A latent model
learned with this methodology is also task-agnostic but can extract control-relevant information.
In contrast, task-relevant representations can be learned by predicting costs in the control task (Oh
et al., 2017; Zhang et al., 2020; Schrittwieser et al., 2020). The concept that a good latent state
should be able to predict costs is intuitive, as the costs are directly relevant to optimal control.
This class of methods is the focus of this work.

The cost-driven state representation learning method of particular interest to us is that of
MuZero (Schrittwieser et al., 2020). Announced by DeepMind in 2019, MuZero extends the line
of works including AlphaGo (Silver et al., 2016), AlphaGo Zero (Silver et al., 2017), and Alp-
haZero (Silver et al., 2018) by obviating the knowledge of the game rules. MuZero matches the
superhuman performance of AlphaZero in Go, shogi and chess, while outperforming model-
free RL algorithms in Atari games. MuZero builds upon the powerful planning procedure
of Monte Carlo Tree Search, with the major innovation being learning a latent model. The latent
model replaces the rule-based simulator during planning, and avoids the burdensome planning
in pixel space for Atari games.

MuZero is a milestone algorithm in representation learning for control. Intuitively, the
algorithm design makes sense, but its complexity has so far inhibited a formal theoretical study.
On the other hand, statistical learning theory for linear dynamical systems and control has
evolved rapidly in recent years (Tsiamis et al., 2022); for partially observable linear dynamical
systems, much of the work relies on learning Markov parameters, lacking a direct connection to
the empirical methods used in practice for possibly nonlinear systems. In this work, we aim to
bridge the two areas by studying provable MuZero-style latent model learning in LQG control.

The latent model learning of MuZero features three ingredients: 1) stacking frames, i.e.,
observations, as input to the representation function; 2) predicting costs, “optimal” values, and
“optimal” actions from latent states; and 3) implicit learning of latent dynamics by predicting
these quantities from latent states at future time steps. These are the defining characteristics of
the MuZero-style algorithm that we shall consider. In MuZero, the “optimal” values and actions
are found by the powerful online planning procedure. In this work, we simplify the setup by
considering data collected using random actions, which are known to suffice for identifying
a partially observable linear dynamical system (Oymak and Ozay, 2019). In this setup, the
values become those associated with this trivial policy and we do not predict actions since they
are simply random noises. Note that although our study of the above ingredients is directly
motivated by MuZero, previous empirical works have also explored them. For example, frame
stacking has been a widely used technique to handle partial observability (Mnih et al., 2013,
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2015); predicting values for learning a latent model has been studied in (Oh et al., 2017), which
also learns the latent state transition implicitly.

In (Tian et al., 2023), we have considered provable cost-driven state representation learning
in LQG for the finite-horizon time-varying setting. This work builds upon it and complements
it in two ways: 1) we extend their algorithm to the time-invariant setting with a stationary rep-
resentation function and latent model, which is closer to what has been deployed in practice;
2) we present and analyze a new, MuZero-style latent model learning algorithm. Both 1) and
2) introduce new technical challenges to be addressed. We summarize our contributions as
follows.

• We show that two cost-driven state representation learning methods provably solve infinite-
horizon time-invariant LQG control by establishing finite-sample guarantees. Both meth-
ods only need a single trajectory; one resembles the method in (Tian et al., 2023), and the
other resembles MuZero.

• By analyzing the MuZero-style algorithm, we notice the potential issue of coordinate mis-
alignment: Costs can be invariant to orthogonal transformations of the latent states, and
implicit dynamics learning by predicting one-step transition may not recover the latent
state coordinates consistently. This insight suggests the need to predict multi-step latent
transition or other coordinate alignment procedures in the MuZero-style implicit dynam-
ics learning approaches.

• Technically, we overcome the difficulty of having correlated data in a single trajectory for
latent model learning, as we are dealing with the time-invariant setting and need to ag-
gregate samples across time steps in contrast to (Tian et al., 2023). To do so, we prove a
new result about the persistency of excitation for a stochastic process that arises from the
analysis of the quadratic regression subroutine in both of our methods.

Notation. Random vectors are denoted by lowercase letters; sometimes they also denote their
realized values. Uppercase letters denote matrices, some of which can be random. Let a ∧ b
denote the minimum between scalars a and b. Let 0 (resp. 1) denote either the scalar or a matrix
consisting of all zeros (resp. all ones); let I denote an identity matrix. The dimension, when
emphasized, is specified in subscripts, e.g., 0dx×dx , 1dx , Idx . The dimension, when emphasized,
is specified in subscripts, e.g., 1d, Id. Given vector v ∈ Rd, let ∥v∥ denote its ℓ2 norm and
∥v∥P := (v⊤Pv)1/2 for positive semidefinite P ∈ Rd×d. Given symmetric matrices P and Q,
P ≻ Q or Q ≺ P means P − Q is positive definite, and P ≽ Q or Q ≼ P means P − Q is positive
semidefinite. Semicolon “;” denotes stacking vectors or matrices vertically. For a collection of
d-dimensional vectors (vt)

j
t=i, let vi:j := [vi; vi+1; . . . ; vj] ∈ Rd(j−i+1) and vj:i := [vj; vj−1; . . . ; vi] ∈

Rd(j−i+1) denote the concatenation along the column. For random variable x, let ∥x∥ψθ
denote

its θ-sub-Weibull norm for θ > 0, a special case of Orlicz norms (Zhang and Wei, 2022), with
θ = 1, 2 corresponding to subexponential and sub-Gaussian norms. For random vector x, y, let
Cov(x, y) denote the covariance matrix between x and y; with a slight abuse of notation, define
Cov(x) := Cov(x, x). For matrix A, let σmin(A), ∥A∥2, ∥A∥F, and ∥A∥∗ denote its minimum
eigenvalue, minimum singular value, operator norm (induced by vector ℓ2 norms), Frobenius
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norm, and nuclear norm, respectively. ⟨·, ·⟩F denotes the Frobenius inner product between
matrices. For square matrix A, let λmin(A) be its minimum eigenvalue and ρ(A) be its spectral
radius. Define α(A) := supk≥0 ∥Ak∥2ρ(A)−k. Let svec(·) denote the operator of flattening a
symmetric matrix by stacking its columns; it does not repeat the off-diagonal elements, but
scales them by

√
2 (Schacke, 2004). We adopt the standard use of O(·), Ω(·), Θ(·), where the

hidden constants are dimension-free but may depend on system parameters.

2 Problem setup

A partially observable linear time-invariant (LTI) dynamical system is described by

xt+1 = A∗xt + B∗ut + wt, yt = C∗xt + vt, (2.1)

with state xt ∈ Rdx , observation yt ∈ Rdy , and control ut ∈ Rdu for all t ≥ 0. Process noises
(wt)t≥0 and observation noises (vt)t≥0 are i.i.d. zero-mean Gaussian random vectors with co-
variance matrices Σw and Σv, respectively, and the two sequences are mutually independent.
Let initial state x0 be sampled from N (0, Σ0). The quadratic cost function is given by

c(x, u) = ∥x∥2
Q∗ + ∥u∥2

R∗ , (2.2)

where Q∗ ≽ 0 and R∗ ≻ 0.

A policy/controller π determines an action/control input ut at time step t based on the
history [y0:t; u0:(t−1)] up to this time step. For t ≥ 0, let ct := c(xt, ut) denote the cost at time
step t. Given a policy π, let

Jπ := lim sup
T→∞

E

[
1
T ∑T−1

t=0 ct

]
(2.3)

denote the time-averaged expected cost. The objective of LQG control is to find a policy π such
that Jπ is minimized.

In the fully observable setting, known as the linear quadratic regulator (LQR) problem,
we have yt = xt. A linear controller with feedback gain K ∈ Rdu×dx determines action
ut = Kxt at time step t. Let JK(A∗, B∗, Q∗, R∗) denote the time-averaged expected cost (2.3)
in the LQR problem (A∗, B∗, Q∗, R∗) under feedback gain K and define J∗(A∗, B∗, Q∗, R∗) :=
minK JK(A∗, B∗, Q∗, R∗).

We make the following standard assumptions.

Assumption 1. System dynamics (2.1) and cost (2.2) satisfy:

1. The system is stable, that is, ρ(A∗) < 1.

2. (A∗, B∗) is ν-controllable for some ν > 0, that is, the controllability matrix

Φc(A∗, B∗) := [B∗, A∗B∗, . . . , (A∗)dx−1B∗]

has rank dx and σmin(Φc(A∗, B∗)) ≥ ν.
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3. (A∗, C∗) is ω-observable for some ω > 0, that is, the observability matrix

Φo(A∗, C∗) := [C∗; C∗A∗; . . . ; C∗(A∗)dx−1]

has rank dx and σmin(Φo(A∗, C∗)) ≥ ω.

4. (A∗, Σ1/2
w ) is κ-controllable for some κ > 0.

5. (A∗, (Q∗)1/2) is µ-observable for some µ > 0.

6. Σv ≽ σ2
v I for some σv > 0; this can always be achieved by inserting Gaussian noises with full-rank

covariance matrices to the observations.

7. R∗ ≽ r2 I for some r > 0.

8. The operator norms of A∗, B∗, C∗, Q∗, R∗, Σw, Σv, Σ0 and α(A∗), α(A∗
) are O(1), where we

recall that for a square matrix A, α(A) := supk≥0 ∥Ak∥2ρ(A)−k; the singular value lower bounds
ν, ω, ν, κ, σv, r and spectral radii ρ(A∗), ρ(A∗

) are Ω(1), where A∗ is defined in §2.1.

If the system parameters (A∗, B∗, C∗, Q∗, R∗, Σw, Σv) are known, the optimal policy is ob-
tained by combining the Kalman filter

z∗t+1 = A∗z∗t + B∗ut + L∗(yt+1 − C∗(A∗z∗t + B∗ut)) (2.4)

with the optimal feedback gain K∗ of the linear quadratic regulator such that ut = K∗z∗t , where
L∗ is the Kalman gain, and at the initial time step, we can set, e.g., z∗0 = L∗y0. This fact is known
as the separation principle, and the Kalman gain and optimal feedback gain are given by

L∗ = S∗(C∗)⊤(C∗S∗(C∗)⊤ + Σv)
−1, (2.5)

K∗ = − ((B∗)⊤P∗B∗ + R)−1(B∗)⊤P∗A∗, (2.6)

where S∗ and P∗ are determined by their respective discrete-time algebraic Riccati equations (DAREs):

S∗ = A∗(S∗ − S∗(C∗)⊤(C∗S∗(C∗)⊤ + Σv)
−1C∗S∗)(A∗)⊤ + Σw, (2.7)

P∗ = (A∗)⊤
(

P∗ − P∗B∗((B∗)⊤P∗B∗ + R∗)−1(B∗)⊤P∗)A∗ + Q∗. (2.8)

Assumptions 1.2 to 1.7 guarantee the existence and uniqueness of positive definite solutions S∗

and P∗; Assumption 1.8 further guarantees that their operator norms are O(1) and minimum
singular values are Ω(1). The assumption on α(A∗), α(A∗

), ρ(A∗), ρ(A∗
) provides guarantees

for state estimation from a finite history and has also been made in the literature (Mania et al.,
2019; Oymak and Ozay, 2019). If ρ(A∗) or ρ(A∗

) equals zero, then (A∗)dx or (A∗
)dx is a zero

matrix by the Cayley-Hamilton theorem, so using history length H ≥ dx completely eliminates
the truncation errors. Thus, Assumption 1.8 does not lose generality.

We consider the data-driven control setting, where the LQG model (A∗, B∗, C∗, Q∗, Σw, Σv)

is unknown. For simplicity, we assume R∗ is known, though our approaches can be readily
extended to the case where it is unknown by learning it from predicting costs.
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2.1 Latent model of infinite-horizon time-invariant LQG

The stationary Kalman filter (2.4) asymptotically produces the optimal state estimation in the
sense of minimum mean squared errors. With a finite horizon, however, the optimal state
estimator is time-varying, given by

z∗t+1 = A∗z∗t + B∗ut + L∗
t+1(yt+1 − C∗(A∗z∗t + B∗ut)), (2.9)

where L∗
t is the time-varying Kalman gain, converging to L∗ as t → ∞. This convergence

is equivalent to that of error covariance matrix E[(xt − z∗t )(xt − z∗t )
⊤], which is exponentially

fast (Komaroff, 1994). Hence, for simplicity, we assume this error covariance matrix is stationary
at the initial time step by the choice of z∗0 so that L∗

t = L∗ for t ≥ 1; this assumption has also
been adopted in the literature (Lale et al., 2020, 2021; Jadbabaie et al., 2021). The innovation term
it+1 := yt+1 − C∗(A∗z∗t + B∗ut) is independent of the history (y0, u0, y1, . . . , ut−1, yt) and (it)t≥1

are mutually independent. The following proposition taken from Proposition 1 in (Tian et al.,
2023) represents the system in terms of the state estimates obtained by the Kalman filter, which
we refer to as the latent model.

Proposition 1. Let (z∗t )t≥1 be state estimates given by the Kalman filter. Then, for t ≥ 0,

z∗t+1 = A∗z∗t + B∗ut + L∗it+1,

where L∗it+1 is independent of z∗t and ut, i.e., the state estimates follow the same linear dynamics with
noises L∗it+1. The cost at step t can be reformulated as functions of the state estimates by

ct = ∥z∗t ∥2
Q∗ + ∥ut∥2

R∗ + b∗ + γt + ηt,

where b∗ = E[∥xt − z∗t ∥2
Q∗ ] > 0, and γt = ∥xt − z∗t ∥2

Q∗ − b∗, ηt =
〈
z∗t , xt − z∗t

〉
Q∗ are both zero-mean

subexponential random variables independent of . Moreover, b∗ = O(1) and ∥γt∥ψ1 = O(d1/2
x ); if

control ut ∼ N (0, σ2
u I) for t ≥ 0, then we have ∥ηt∥ψ1 = O(d1/2

x ).

Proposition 1 shows that the dynamics of the state estimates computed by the time-varying
Kalman filter is the same as the original system up to noises; the costs are also the same, up
to constants and noises. Hence, a latent model can be parameterized by (A, B, Q, R∗), with the
constant b∗ and noises neglected due to their irrelevance to planning. A stationary latent policy
is a linear controller ut = Kzt on latent state zt, parameterized by feedback gain K ∈ Rdu×dx .

The latent model enables us to find a good latent policy. To learn such a latent model and
to deploy a latent policy in the original partially observable system, we need a representation
function. Let A∗

:= (I − L∗C∗)A∗ and B∗ := (I − L∗C∗)B∗. Then, the Kalman filter can be
written as z∗t+1 = A∗z∗t + B∗ut + L∗yt+1. For t ≥ 0, unrolling the recursion gives

z∗t = A∗
(A∗z∗t−2 + B∗ut−2 + L∗yt−1) + B∗ut−1 + L∗yt

= [(A∗
)t−1L∗, . . . , L∗]y1:t + [(A∗

)t−1B∗, . . . , B∗
]u0:(t−1) + (A∗

)tz∗0
=: M∗

t [y1:t; u0:(t−1); z∗0 ],
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where M∗
t ∈ Rdx×(tdy+tdu+dx). This means the representation function can be parameterized as

linear mappings for full histories (with y0 replaced by z∗0). Despite the simplicity, the input
dimension of the function grows linearly in time, making it intractable to estimate the state
using the full history for large t; nor it is necessary, since the impact of old data decreases
exponentially. Under Assumption 1, ρ(A∗

) < 1 (Bertsekas, 2012, Appendix E.4). With an
H-step truncated history, the state estimate can be written as

z∗t = [(A∗
)H−1L∗, . . . , L∗]y(t−H+1):t + [(A∗

)H−1B∗, . . . , B∗
]u(t−H):(t−1) + δt

=: M∗[y(t−H+1):t; u(t−H):(t−1)] + δt, (2.10)

where δt = (A∗
)Hz∗t−H, whose impact decays exponentially in H and can be neglected for suf-

ficiently large H, since z∗t−H converges to a stationary distribution and its norm is bounded
with high probability. Hence, the representation function that we aim to recover is M∗ ∈
Rdx×H(dy+du), which takes as input the H-step history ht = [y(t−H+1):t; u(t−H):(t−1)]. Henceforth,
we let dh := H(dy + du). Then, a representation function is parameterized by matrix M ∈ Rdx×dh .

Overall, a policy is a combination of a state representation function M and a feedback gain
K in the latent model, denoted by π = (M, K). Learning to solve LQG control in this framework
can thus be achieved by: 1) learning state representation function M; 2) extracting latent model
(A, B, Q, R∗); and 3) finding the optimal K by planning in the latent model. Next, we introduce
our approach following this pipeline.

3 Method

In practice, latent model learning methods collect trajectories by interacting with the system
online using some policy; the trajectories are used to improve the learned latent model, which
in turn improves the policy. In LQG control, it is known that the simple setup allows us to
learn a good latent model from a single trajectory, collected using zero-mean Gaussian inputs;
see e.g., (Oymak and Ozay, 2019). This is also how we assume the data are collected. We note
that our results also apply to data from multiple independent trajectories using inputs from the
same zero-mean Gaussian distribution.

In our cost-driven state representation learning approach, state representations are learned
by predicting costs. To learn the transition function in the latent model, two approaches have
been explored in the literature. The first approach explicitly minimizes the transition prediction
error (Subramanian et al., 2020; Hafner et al., 2019a). Algorithmically, the overall loss is a com-
bination of cost prediction and transition prediction errors. The second approach, as MuZero in
Schrittwieser et al. (2020) takes, learns the transition dynamics implicitly, by minimizing cost pre-
diction errors at future states generated from the transition function (Oh et al., 2017; Schrittwieser
et al., 2020). Algorithmically, the overall loss aggregates the cost prediction errors across multiple
time steps. In both approaches, the coupling of different terms in the loss makes finite-sample
analysis difficult. As observed in (Tian et al., 2023), the structure of LQG allows us to learn
the representation function independently of learning the transition function. This allows us to
formulate both approaches under the same cost-driven state representation learning framework
(c.f. Algorithm 1).
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Algorithm 1 Cost-driven state representation learning
1: Input: length T, history length H, noise magnitude σu

2: Collect a trajectories of length T + H using ut ∼ N (0, σ2
u I), for t ≥ 0, to obtain

Draw = (y0, u0, c0, y1, u1, c1, . . . , yT+H−1, uT+H−1, cT+H−1, yT+H) (3.1)

3: Estimate the state representation function and cost constants by solving

N̂, b̂0 ∈ argmin
N=N⊤,b0

∑T+H−1
t=H

(∥∥ht
∥∥2

N + b0 − ct
)2, (3.2)

where ht = [y(t−H+1):t; u(t−H):(t−1)] and ct := ∑t+dx−1
τ=t (cτ − ∥uτ∥2

R∗)

4: Find M̂ ∈ argminM∈Rdx×H(dy+du) ∥M⊤M − N̂∥F

5: Compute ẑt = M̂[y(t−H+1):t; u(t−H):(t−1)] for all t ≥ H, so that the data are converted to
Dstate:

(ẑH, uH, cH, . . . , ẑT+H−1, uT+H−1, cT+H−1, ẑT+H)

6: Run SysId (3.4) or CoSysId (Algorithm 2) to obtain dynamics matrices (Â, B̂)
7: Estimate the cost function by solving

Q̃, b̂ ∈ argmin
Q=Q⊤,b

∑T+H−1
t=H (∥ẑt∥2

Q + ∥ut∥2
R∗ + b − ct)

2 (3.3)

8: Truncate negative eigenvalues of Q̃ to zero to obtain Q̂ ≽ 0
9: Find feedback gain K̂ from (Â, B̂, Q̂, R∗) by solving DARE (2.8) and (2.6)

10: Return: policy π̂ = (M̂, K̂)

Algorithm 1 consists of three main steps. Lines 3 to 5 correspond to cost-driven represen-
tation function learning. Lines 6 to 8 correspond to latent model learning, where the system
dynamics can be identified either explicitly, by ordinary least squares (SysId), or implicitly, by
future cost prediction (CoSysId, Algorithm 2). Line 9 corresponds to the policy optimization
procedure in the latent model; in LQG this amounts to solving DAREs. Below we elaborate on
cost-driven representation learning, SysId, and CoSysId in order.

3.1 Cost-driven representation function learning

The procedure of cost-driven representation function learning is consistent with (Tian et al.,
2023). The main idea is to perform quadratic regression (3.2) to the dx-step cumulative costs;
this step corresponds to the value prediction in MuZero. By the µ-observability of (A∗, (Q∗)1/2)

(Assumption 1.5), the cost observability Gram matrix satisfies

Q∗
:= ∑dx−1

t=0 ((A∗)t)⊤Q∗(A∗)t ≽ µ2 I.
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Under zero control and zero noise, starting from x, the dx-step cumulative cost is precisely
∥x∥2

Q∗ . Hence, with the impact of zero-mean control inputs and zero-mean noises averaged

out, N̂ estimates N∗ = (M∗)⊤Q∗M∗; up to an orthogonal transformation, M̂ recovers M∗′ :=
(Q∗

)1/2M∗, the representation function under an equivalent parameterization, termed as the
normalized parameterization in (Tian et al., 2023), where

A∗′ = (Q∗
)1/2A∗(Q∗

)−1/2, B∗′ = (Q∗
)1/2B, C∗′ = C∗(Q∗

)−1/2,

w′
t = (Q∗

)1/2wt, Q∗′ = (Q∗
)−1/2Q∗(Q∗

)−1/2.

Due to the following proposition, the algorithm does not need to know the dimension dx of
the latent model; it can discover dx from the eigenvalues of N̂.

Proposition 2. Under i.i.d. control inputs ut ∼ N (0, σ2
u I) for t ≥ 0, λmin(Cov(z∗t )) = Ω(ν2) for

t ≥ dx, where ν is defined in Assumption 1.2. As long as H ≥ log(aα(A∗
))

log(ρ(A∗
)−1)

for some dimension-free

constant a > 0, M∗ has rank dx and σmin(M∗) ≥ Ω(νH−1/2).

Proof. For t ≥ dx, unrolling the Kalman filter gives

z∗t = A∗z∗t−1 + B∗ut−1 + L∗it

= A∗(A∗z∗t−2 + B∗ut−2 + L∗it−1) + L∗it

= [B∗, . . . , (A∗)dx−1B∗][ut−1; . . . ; ut−dx ] + (A∗)dx z∗t−dx
+ [L∗, . . . , (A∗)dx−1L∗][it; . . . ; it−dx+1],

where (uτ)
t−1
τ=t−dx

, z∗t−dx
and (iτ)t

τ=t−dx+1 are independent. For H ≥ dx, the matrix multiplied by
[ut−1; . . . ; ut−dx ] is precisely the controllability matrix Φc(A∗, B∗). Then,

Cov(z∗t ) = E[z∗t (z
∗
t )

⊤] ≽ Φc(A∗, B∗)E[[ut−1; . . . ; ut−ℓ][ut−1; . . . ; ut−ℓ]
⊤]Φ⊤

c (A∗, B∗)

= σ2
uΦc(A∗, B∗)Φ⊤

c (A∗, B∗).

By the ν-controllability of (A∗, B∗), Cov(z∗t ) is full-rank and λmin(Cov(z∗t )) ≥ σ2
uν2. Since z∗t =

M∗ht + δt by (2.10), we have

Cov(M∗ht) = Cov(z∗t − δt) = Cov(z∗t ) + Cov(δt)− Cov(z∗t , δt)− Cov(δt, z∗t ).

Then,

∥Cov(z∗t , δt)∥2 = ∥Cov(δt, z∗t )∥2 = ∥E[z∗t δ⊤t ]∥2

(i)
≤ ∥E[z∗t (z

∗
t )

⊤]∥1/2
2 · ∥E[δtδ

⊤
t ]∥1/2

2

= ∥Cov(z∗t )∥1/2
2 · ∥Cov(δt)∥1/2

2 ,

where (i) is due to Lemma 6. Hence, by Weyl’s inequality,

λmin(Cov(M∗ht)) ≥ λmin(Cov(z∗t ))− 2∥Cov(z∗t )∥1/2
2 · ∥Cov(δt)∥1/2

2 .
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Since ∥Cov(z∗t )∥2 = O(1) due to the stability of A∗ and δt = (A∗
)Hz∗t−H, there exists some

dimension-free constant a > 0 such that as long as H ≥ log(aα(A∗
))

log(ρ(A∗
)−1)

,

λmin(Cov(M∗ht)) ≥ σ2
uν2/2.

On the other hand,

E[M∗hth⊤t (M∗)⊤] ≼ ∥E[hth⊤t ]∥2M∗(M∗)⊤.

Since ht = [y(t−H+1):t; u(t−H):(t−1)] and (Cov(yt))t≥0, (Cov(ut))t≥0 have O(1) operator norms,
by Lemma 7, ∥Cov(ht)∥2 = ∥E[hth⊤t ]∥2 = O(H). Hence,

0 < σ2
uν2/2 ≤ λmin(Cov(M∗ht)) = O(H)σ2

dx
(M∗).

Since M∗ ∈ Rdx×dh , this implies that rank(M∗) = dx and σmin(M∗) = Ω(νH−1/2).

Proposition 2 is an adaption of Proposition 2 in (Tian et al., 2023) to the infinite-horizon
LTI setting. Necessarily, this implies that by our choice of H, dh = H(dy + du) ≥ dx. More-
over, since Q∗

≽ µ2 I, N∗ = (M∗)⊤Q∗M∗ is a dh × dh matrix with rank dx, and λ+
min(N∗) ≥

λmin(Q
∗
)σ2

min(M∗) = Ω(µ2ν2H−1). Hence, if N̂ is sufficiently close to N∗, by setting an appro-
priate threshold on the eigenvalues of N̂, the dimension of the latent model equals the number
of eigenvalues above it.

To find an approximate factorization of N̂, let N̂ = UΛU⊤ be its eigenvalue decomposition,
where the diagonal elements of Λ are listed in descending order, and U is an orthogonal ma-
trix. Let Λdx be the top-left dx × dx block of Λ and Udx be the left dx columns of U. By the
Eckart-Young-Mirsky theorem, M̂ = max(Λdx , 0)1/2U⊤

dx
, where “max” applies elementwise, is

the solution to Line 4 of Algorithm 1, that is, the best approximate factorization of N̂ among
dx × dh matrices in terms of the Frobenius norm approximation error.

In the next two subsections, we move on to discussing the learning of latent dynamics,
including the explicit approach SysId and the implicit approach CoSysId.

3.2 Explicit learning of system dynamics

Explicit learning of the system dynamics simply minimizes the transition prediction error in the
latent space (Subramanian et al., 2020), or more generally, the statistical distances between the
predicted and estimated distributions of the next latent state, like the KL divergence (Hafner
et al., 2019a). In linear systems, it suffices to use the ordinary least squares as the SysId proce-
dure, that is, to solve

(Â, B̂) ∈ argmin
A,B

∑T+H−1
t=H ∥Aẑt + But − ẑt+1∥2. (3.4)

In this linear regression, if (ẑt)t≥H are the optimal state estimates (z∗t )t≥H (2.9), then Simchowitz
et al. (2018) has shown finite-sample guarantees for obtaining (Â, B̂). Here, ẑt contains errors
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resulting from the representation function M̂ and the residual error δt in (2.10), but as long
as T and H are large enough, SysId still has a finite-sample guarantee, as will be shown in
Lemma 5. We refer to the algorithm that instantiates Algorithm 1 with SysId as CoReL-E (Cost-
driven state Representation Learning). As the time-varying counterpart in (Tian et al., 2023), it
provably solves LQG control without model-knowledge, as will be shown in Theorem 1.

3.3 Implicit learning of system dynamics (MuZero-style)

An important ingredient of latent model learning in MuZero (Schrittwieser et al., 2020) is to
implicitly learn the transition function by minimizing the cost prediction error at future latent
states generated from the transition function. Let zt = Mht denote the latent state given by
representation function M at step t. Let zt,0 = zt and zt,i = Azt,i−1 + But+i−1 for i ≥ 1 be
the future latent state predicted by dynamics (A, B) from zt after i steps of transition. For a
trajectory of length T + H like (3.1), the loss that considers ℓ steps into the future is given by

∑T+H−K−1
t=H ∑ℓ

i=0(∥zt,i∥2
Q + ∥ut∥2

R∗ + b − ct)
2.

This loss involves powers of A up to Aℓ; with the squared norm, the powers double, making the
minimization over A hard to solve and analyze for ℓ ≥ 2. In LQG control, our finding is that
it suffices to take ℓ = 1. As mentioned in §1, MuZero also predicts optimal values and optimal
actions; in LQG, to handle the case Q∗ ̸≻ 0, like cost-driven representation learning (see §3.1),
we adopt the cumulative costs and use the normalized parameterization. Thus, the optimization
problem we aim to solve is given by

min
M,A,B,b

∑T+H−1
t=H

(
(∥Mht∥2 + b − ct)

2 + (∥AMht + But∥2 + b − ct+1)
2). (3.5)

To convexify the optimization problem (3.5), we define N := M⊤M and N1 := [AM, B]⊤[AM, B].
Then, (3.5) becomes

min
N,N1,b

∑T+H−1
t=H

(
(∥ht∥2

N + b − ct)
2 + (∥[ht; ut]∥2

N1
+ b − ct+1)

2). (3.6)

This minimization problem is convex in N, N1, and b, and has a closed-form solution; essen-
tially, it consists of two linear regression problems coupled by b. As a relaxation, we can decou-
ple the two regression problems by allowing b to take different values in them; this works since
the separate solutions for b in the two regression problems are close to each other for large T,
and b is a term accounting for the estimation error, not part of the representation function. This
decoupling further simplifies the analysis: the first regression problem is exactly cost-driven
representation learning (§3.1), and the second is cost-driven system identification (CoSysId,
Algorithm 2). The algorithm that instantiates Algorithm 1 with CoSysId is called CoReL-I
(Cost-driven state Representation and Dynamic Learning). Like CoReL-E, this MuZero-style
latent model learning method provably solves LQG control, as we will show in Theorem 1.

CoSysId has similar steps to cost-driven representation learning (§3.1), except that in Line
5 of Algorithm 2, it requires fitting a matrix Ŝ0. This is because the cost is invariant to the
orthogonal transformations of latent states, and the approximate factorization steps recover
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Algorithm 2 CoSysId: Cost-driven system identification

1: Input: data Draw, representation function M̂
2: Estimate the system dynamics by

N̂1, b̂1 ∈ argmin
N1=N⊤

1 ,b1

∑T+H−1
t=H

(
∥[ht; ut]∥2

N1
+ b1 − ct+1

)2 (3.7)

3: Find M̂1 ∈ argminM1∈Rdx×(Hdy+(H+1)du) ∥M⊤
1 M1 − N̂1∥F

4: Split M̂1 to [M̃, B̃] at column H(dy + du) and set Ã = M̃M̂†.
5: Find alignment matrix Ŝ0 by

Ŝ0 ∈ argmin
S0∈Rdx×dx

∑T+H−1
t=H ∥S0M̂1[ht; ut]− M̂ht+1∥2 (3.8)

6: Return: system dynamics estimate (Â, B̂) = (Ŝ0Ã, Ŝ0B̃)

M∗ and M∗
1 up to orthogonal transformations S and S1, but there is no guarantee for the two

transformations to be the same. MuZero bypasses this problem by predicting multiple steps
of costs into the future, but analyzing such an optimization function involves the additional
complexity of dealing with powers of A. Here, we instead estimate the S0 = SS⊤

1 to align such
two transformations. We note that although CoSysId needs the output M̂ from cost-driven
representation learning, the two quadratic regressions (3.2) and (3.7) are not coupled and can
be solved in parallel.

Discussion on CoSysId. In CoSysId (Algorithm 2), the covariates of the quadratic regression
in (3.7) are ([ht; ut])t≥H. One may wonder if we can pursue an alternative approach by fixing M
to be M̂, and using ([ẑt; ut])t≥H as covariates, which have a much lower dimension, though the
two quadratic regressions cannot be solved in parallel anymore. Specifically, the new quadratic
regression we need to solve is given by

N̂2, b̂2 ∈ argmin
N2=N⊤

2 ,b2

∑T+H−1
t=H

(
∥[ẑt; ut]∥2

N2
+ b2 − ct+1

)2,

where ẑt = M̂ht is an approximation of Sz∗t . The ground truth for N̂2 is N∗
2 = [SA∗S⊤, SB∗]⊤[SA∗S⊤, SB∗],

so its approximate factorization recovers [S2A∗S⊤, S2B∗] for some orthogonal matrix S2. In a
similar way to CoSysId, we still need to fit an alignment matrix S3 = SS⊤

2 to align the coordi-
nates. Let Ã, B̃ denote the system parameters recovered from N̂2. The linear regression we now
need to solve is from ([Ã, B̃][ẑt; ut])

T+H−1
t=H to (ẑt+1)

T+H−1
t=H . However, without further assump-

tions, [A∗, B∗] does not necessarily have full row rank, and hence, neither does [Ã, B̃], in which
case recovering the entire S3 is impossible.

On the other hand, for CoSysId (Algorithm 2), the ground truth of M̂1 is M∗
1 = [A∗M∗, B∗],

which is guaranteed to have full row rank by the same argument as the proof of Proposition 2,
since M∗

1 [ht; ut] estimates z∗t+1, which has full-rank covariance. Hence, recovering S0 = SS⊤
1

is feasible.
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4 Theoretical guarantees

The following Theorem 1 shows that both CoReL-E and CoReL-I are guaranteed to solve un-
known LQG control with a finite number of samples.

Theorem 1. Given an unknown LQG control problem satisfying Assumption 1, let M∗′ and (A∗′, B∗′, Q∗′, R∗)

be the optimal state representation function and the true system parameters under the normalized parame-
terization. For a given p ∈ (0, 1), if we run CoReL-E (Algorithm 1 with (3.4)) or CoReL-I (Algorithm 1
with Algorithm 2) for T ≥ poly(dx, dy, du, log(T/p)), H = Ω(log(HT)), and σu = Θ(1), then there
exists an orthogonal matrix S ∈ Rdx×dx , such that with probability at least 1 − p, the representation
function M̂ satisfies

∥M̂ − SM∗′∥2 = O(poly(H, dx, du, dy, log(T/p))T−1/2),

and the feedback gain K̂ satisfies

JK̂(SA∗′S⊤, SB∗′, SQ∗′S⊤, R∗)− J∗(SA∗′S⊤, SB∗′, SQ∗′S⊤, R∗)

= O(poly(H, dx, du, dy, log(T/p))T−1).

We defer the proof of Theorem 1 to §4.5. Compared with the time-varying setting in (Tian
et al., 2023), the bounds here do not have a separation between the initial steps and future steps,
where for the initial several steps, as the system has not been fully excited, the bounds were
much worse. This is due to the fact that in the time-invariant setting, the representation function
and the latent model are both stationary. On the other hand, to learn such stationary functions
across different time steps, we need to aggregate correlated data along a single trajectory, which
poses new significant challenges for the analysis. A major effort to overcome such difficulties
involves proving a new result on the persistency of excitation (Lemma 1) using the small-ball
method (Mendelson, 2015; Simchowitz et al., 2018), which will be discussed further in §4.2 with
more details.

Compared with common system identification methods based on learning Markov parame-
ters (Oymak and Ozay, 2019; Simchowitz et al., 2019), the error bounds of the system parameters
produced by CoReL-I (or CoReL-E) have the same dependence on T, but worse dependence
on system dimensions. Moreover, to establish persistency of excitation, CoReL-I (or CoReL-E)
requires a larger burn-in period. These relative sample inefficiencies are the price we pay for
cost-driven state representation learning, which is only supervised by scalar-valued costs that
are quadratic in history, instead of vector-valued observations that are linear in history. Hence,
we have to address the more challenging problem of quadratic regression, which lifts the dimen-
sion of the optimization problem. On the other hand, cost-driven state representation learning
avoids learning the observation-reconstruction function C∗, and can learn task-relevant repre-
sentations in more complex settings, as demonstrated by empirical studies.

4.1 Proposition on multi-step cumulative costs

The following proposition shows the relationship between ct+ℓ and ht, which is important for
analyzing CoReL-E and CoReL-I. It is the counterpart of Proposition 3 in (Tian et al., 2023) in
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the LTI setting.

Proposition 3. Given an LQG control problem satisfying Assumption 1, let M∗ be the state repre-
sentation function under the normalized parameterization. Let α = max(α(A∗), α(A∗

)) and ρ =

max(ρ(A∗), ρ(A∗
)). If we apply ut ∼ N (0, σ2

u I), then for any t ≥ H,

ct := ∑t+dx−1
τ=t (cτ − ∥uτ∥2

R∗) = ∥M∗ht∥2 + δt + b
∗
+ et,

where δt = O(α2ρH log(T/p)) is a small error term, b
∗
= O(dx) is a positive constant, and et is a

zero-mean subexponential random variable with ∥et∥ψ1 = O(d3/2
x ). Moreover, let f t = [svec(hth⊤t ); 1].

As long as H ≥ max(dx − 1, a log(αT log(T/p))
log(1/ρ)

) for some problem-dependent constant a > 0, (et)t≥H

satisfy ∥∥∥∑T+H−1
t=H f tet

∥∥∥ = O(d3/2
x dhH1/2T1/2 log1/2(1/p)).

Proof. Using Φc,ℓ as a shorthand for Φc,ℓ(A∗, B∗) below, by definition, we have

ct+ℓ − ∥ut+ℓ∥2
R∗ = ∥xt+ℓ∥2

Q∗

=
∥∥∥(A∗)ℓxt + Φc,ℓ[ut+ℓ−1; . . . ; ut] + ∑ℓ

i=1(A∗)i−1wt+ℓ−i

∥∥∥2

Q∗

(i)
= ∥(A∗)ℓxt∥2

Q∗ + ∥Φc,ℓu(t+ℓ−1):t∥2
Q∗ +

∥∥∥∑ℓ

i=1(A∗)i−1wt+ℓ−i

∥∥∥2

Q∗
,

where (i) is due to the independence of the three terms. Substituting xt = z∗t + (xt − z∗t ) and
z∗t = M∗ht + δt into the above equation, we have

ct+ℓ − ∥ut+ℓ∥2
R∗ = ∥(A∗)ℓz∗t ∥2

Q∗ + ∥(A∗)ℓ(xt − z∗t )∥2
Q∗ + 2

〈
(A∗)ℓz∗t , (A∗)ℓ(xt − z∗t )

〉
Q∗

+ ∥Φc,ℓu(t+ℓ−1):t∥2
Q∗ +

∥∥∥∑ℓ

i=1(A∗)i−1wt+ℓ−i

∥∥∥2

Q∗

= ∥(A∗)ℓ(M∗ht + δt)∥2
Q∗ + ∥(A∗)ℓ(xt − z∗t )∥2

Q∗ + 2
〈
(A∗)ℓz∗t , (A∗)ℓ(xt − z∗t )

〉
Q∗

+ ∥Φc,ℓu(t+ℓ−1):t∥2
Q∗ +

∥∥∥∑ℓ

i=1(A∗)i−1wt+ℓ−i

∥∥∥2

Q∗

= ∥(A∗)ℓM∗ht∥2
Q∗ + δt,ℓ + b∗ℓ + et,ℓ,

where δt,ℓ := ∥(A∗)ℓδt∥2
Q∗ + 2

〈
(A∗)ℓM∗ht, (A∗)ℓδt

〉
Q∗ is a small term, and

b∗ℓ := E
[
∥(A∗)ℓ(xt − z∗t )∥2

Q∗ + ∥Φc,ℓu(t+ℓ−1):t∥2
Q∗ +

∥∥∥∑ℓ

i=1(A∗)i−1wt+ℓ−i

∥∥∥2

Q∗

]
,

et,ℓ := ∥(A∗)ℓ(xt − z∗t )∥2
Q∗ + 2

〈
(A∗)ℓz∗t , (A∗)ℓ(xt − z∗t )

〉
Q∗

+ ∥Φc,ℓu(t+ℓ−1):t∥2
Q∗ +

∥∥∥∑ℓ

i=1(A∗)i−1wt+ℓ−i

∥∥∥2

Q∗
− b∗ℓ .

Note that b∗ℓ is not a function of time step t and et,ℓ is a zero-mean subexponential random
variable with ∥et,ℓ∥ψ1 = O(d1/2

x ). Define filtration

Ft := σ(x0, y0, u0, x1, y1, . . . , ut−1, xt, yt).
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Then, et,ℓ ∈ Ft+ℓ. Under the normalized parameterization, where ∑dx−1
ℓ=0 ((A∗)ℓ)⊤Q∗(A∗)ℓ = I,

we have

ct = ∑t+dx−1
τ=t (cτ − ∥uτ∥2

R∗) = ∥M∗ht∥2 + δt + b
∗
+ et,

where

δt := ∑dx−1
ℓ=0 δt,ℓ = ∥δt∥2 + 2

〈
(A∗)ℓM∗ht, (A∗)ℓδt

〉
,

b
∗

:= ∑dx−1
ℓ=0 bℓ = E

[
∥xt − z∗t ∥2 + ∑dx−1

ℓ=0 ∥Φc,ℓu(t+ℓ−1):t∥2
Q∗ +

∥∥∥∑ℓ

i=1(A∗)i−1wt+ℓ−i

∥∥∥2

Q∗

]
,

et := ∑dx−1
ℓ=0 et,ℓ = ∥xt − z∗t ∥2 + 2

〈
z∗t , xt − z∗t

〉
+ ∑dx−1

ℓ=0

(
∥Φc,ℓu(t+ℓ−1):t∥2

Q∗ +
∥∥∥∑ℓ

i=1(A∗)i−1wt+ℓ−i

∥∥∥2

Q∗

)
− b

∗
.

Since δt = (A∗
)Hz∗t−H,

∥δt∥ = O(α2ρ2H log(T/p) + ∥A∗∥2ℓαρH log(T/p)) = O(α2ρH log(T/p)).

Moreover, constant b
∗
= O(dx), et is a zero-mean subexponential random variable with ∥et∥ψ1 =

O(d3/2
x ), and the random process (et)t≥H is adapted to filtration (Ft+dx−1)t≥H.

However, the concentration of ∑T+H−1
t=H f tet or even ∑T+H−1

t=H et is highly nontrivial, in that
(et)t≥H is not a martingale difference sequence. Below we develop the idea that random
variables that are widely separated in a mixing stochastic process are nearly independent to
show the concentration of ∑T+H−1

t=H f tet. Specifically, we partition the time steps into H =

2(H + dx − 1) = O(H) blocks. For partition H ≤ i < H + H, the indices are given by (i+ jH)j≥0.
To obtain independent random variables (gi+jH)j≥0, we apply the Gram-Schmidt process to
( f i+jHei+jH)j≥0, which is adapted to (Fi+jH+dx−1)j≥0. That is,

gi+(j+1)H = f i+(j+1)Hei+(j+1)H − E[ f i+(j+1)Hei+(j+1)H | Fi+jH+dx−1].

Then,

∑T+H−1
t=H f tet = ∑T+H−1

t=H gt + ∑T+H−1
t=H E[ f i+(j+1)Hei+(j+1)H | Fi+jH+dx−1]. (4.1)

Since each dimension of f t is subexponential with mean and the subexponential norm both
bounded by O(1), each dimension of gi+jH is 1

2 -sub-Weibull, with the sub-Weibull norm being
O(d3/2

x ). By applying sub-Weibull concentration (Hao et al., 2019, Theorem 3.1) to each of the
dh(dh + 1)/2 dimensions of (gi+jH)j≥0, we have∥∥∑j≥0 gi+jH

∥∥ = O(d3/2
x dh(T/H)1/2 log1/2(1/p))

Repeating the above argument for each H ≤ i < H + H, we have∥∥∑T+H−1
t=H gt

∥∥ = O(d3/2
x dhH(T/H)1/2 log1/2(1/p)) = O(d3/2

x dhH1/2T1/2 log1/2(1/p)). (4.2)
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It remains to bound the residuals of the Gram-Schmidt process. To this end, we first ex-
press f t+H and et+H into two parts, one adapted to and the other independent of Ft+dx−1. By
definition,

yt+k = C∗((A∗)kxt + Φc,ku(t+k−1):t + ∑k
i=1(A∗)i−1wt+k−i) + vt+k

= C∗(A∗)kxt + ξ
y
t,k,

where ξ
y
t,k is independent of Ft, and a zero-mean Gaussian random vector with the operator

norm of the covariance matrix being O(1) due to the stability of A∗. Recall that ft = svec(hth⊤t )
and ht = [u(t−H):(t−1); y(t−H+1):t]. Let ht+H = st+H + ξh

t+H
, where

st+H = [0; C∗(A∗)H−H−dx+2xt+dx−1; . . . ; C∗(A∗)H−dx+1xt+dx−1],

ξh
t+H = [u(t+H−H):(t+H−1); ξ

y
t+dx−1,H−H−dx+2

; . . . ; ξ
y
t+dx−1,H−dx+1

],

and ξh
t+H

is independent of Ft+dx−1, and a zero-mean Gaussian random vector with the variance
of each dimension bounded by O(1). Then,

f t+H = svec(ht+Hh⊤t+H)

= svec(st+Hst+H + st+H(ξ
h
t+H)

⊤ + ξh
t+Hs⊤t+H + ξh

t+H(ξ
h
t+H)

⊤).
(4.3)

We now turn to et. Since

xt+1 − z∗t+1 = A∗xt + B∗ut + wt − (A∗z∗t + B∗ut + L∗(yt+1 − C∗(A∗z∗t + B∗ut)))

= A∗(xt − z∗t ) + wt − L∗(C∗(A∗xt + B∗ut + wt) + vt+1 − C∗(A∗z∗t + B∗ut))

= A∗
(xt − z∗t ) + (I − L∗C∗)wt + vt+1,

we have

xt+H − z∗t+H = (A∗
)H−dx+1(xt+dx−1 − z∗t+dx−1) + δx

t+H,

where δx
t+H

is independent of Ft+dx−1, and a zero-mean Gaussian random vector with the

operator norm of the covariance matrix bounded by O(1) due to the stability of A∗
. Since

z∗t+1 = A∗z∗t + B∗ut + L∗yt+1

= A∗z∗t + B∗ut + L∗(C∗(A∗xt + B∗ut + wt) + vt+1)

= A∗z∗t + L∗C∗A∗(xt − z∗t ) + B∗ut + L∗C∗wt + L∗vt+1,

we have

z∗t+H = (A∗)H−dx+1z∗t+dx−1 + ΦA(xt+dx−1 − z∗t+dx−1) + ξz
t+H,

where ΦA := ∑H−dx+1
i=1 (A∗)H−dx+1−iL∗C∗A∗(A∗

)i−1 and ξz
t+H

is independent of Ft+dx−1, and a
zero-mean Gaussian random vector with the operator norm of the covariance matrix bounded
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by O(1) due to the stability of A∗ and A∗
. Hence, et+H can be expressed as

et+H = ∥(A)H−dx+1(xt+dx−1 − z∗t+dx−1) + ξx
t+H∥

2

+ 2
〈
(A∗)H−dx+1z∗t+dx−1 + ΦA(xt+dx−1 − z∗t+dx−1)

+ ξz
t+H, (A)H−dx+1(xt+dx−1 − z∗t+dx−1) + ξx

t+H

〉
+ ξe

t+H − E
[
∥(A)H−dx+1(xt+dx−1 − z∗t+dx−1) + ξx

t+H∥
2
]
,

(4.4)

where

ξe
t+H := ∑dx−1

ℓ=0

(
∥Φc,ℓu(t+H+ℓ−1):(t+H)∥

2
Q∗ +

∥∥∥∑ℓ

i=1(A∗)i−1wt+H+ℓ−i

∥∥∥2

Q∗

)
− E

[
∑dx−1

ℓ=0

(
∥Φc,ℓu(t+H+ℓ−1):(t+H)∥

2
Q∗ +

∥∥∥∑ℓ

i=1(A∗)i−1wt+H+ℓ−i

∥∥∥2

Q∗

)]
is independent of Ft+dx−1, and a zero-mean subexponential random variable with O(d3/2

x )

subexponential norm due to the stability of A∗.

Notice that

E[ f tet] = E[ f tE[et | f t]] = 0.

Then, by substituting (4.3) and (4.4), we have

E[ f t+Het+H | Ft+dx−1]

= E[ f t+Het+H | Ft+dx−1]− E[ f t+Het+H ]

= E
[(

svec(st+Hst+H + st+H(ξ
h
t+H)

⊤ + ξh
t+Hs⊤t+H + ξh

t+H(ξ
h
t+H)

⊤)
)

·
(
∥(A)H−dx+1(xt+dx−1 − z∗t+dx−1) + ξx

t+H∥
2 + 2

〈
(A∗)H−dx+1z∗t+dx−1

+ ΦA(xt+dx−1 − z∗t+dx−1) + ξz
t+H, (A)H−dx+1 · (xt+dx−1 − z∗t+dx−1) + ξx

t+H

〉
+ ξe

t+H

) ∣∣ Ft+dx−1

]
− E

[(
svec(st+Hst+H + st+H(ξ

h
t+H)

⊤ + ξh
t+Hs⊤t+H + ξh

t+H(ξ
h
t+H)

⊤)
)

·
(
∥(A)H−dx+1(xt+dx−1 − z∗t+dx−1) + ξx

t+H∥
2 + 2

〈
(A∗)H−dx+1z∗t+dx−1

+ ΦA(xt+dx−1 − z∗t+dx−1) + ξz
t+H, (A)H−dx+1 · (xt+dx−1 − z∗t+dx−1) + ξx

t+H

〉
+ ξe

t+H

)]
,

where the terms completely independent of Ft+dx−1 cancel each other, and all other terms
contain at least one of (A∗)H−H−dx+2, (A∗

)H−dx+1 and ΦA, with each of the dh(dh + 1)/2 di-
mensions being the product of two subexponential random variables and two Gaussian random
variables. Hence, with probability at least 1 − p,

∥E[ f t+Het+H | Ft+dx−1]∥ = O(αd3/2
x dhρH−H−dx+2 log3(T/p))

= O(αd3/2
x dhρH log3(T/p)).

(4.5)

Finally, combining (4.1) with the bounds in (4.2) and (4.5), we have

∥∑T+H−1
t=H f tet∥ = O(d3/2

x dh(H1/2T1/2 log1/2(1/p) + αρHT log3(T/p))).
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As long as H ≥ a log(αT log(T/p))
log(1/ρ)

for some problem-dependent constant a > 0,

∥∑T+H−1
t=H f tet∥ = O(d3/2

x dhH1/2T1/2 log1/2(1/p)).

4.2 Persistency of excitation

Central to the analysis of CoReL-E and CoReL-I is the finite-sample characterization of the
quadratic regression problem. To solve (3.2), notice that

∥ht∥2
N =

〈
N, hth⊤t

〉
F =

〈
svec(N), svec(hth⊤t )

〉
,

so this quadratic regression is essentially a linear regression problem in terms of [svec(N); b0].
A major difficulty in the analysis is to establish persistency of excitation for ([svec(hth⊤t ); 1])t≥H,
meaning that the minimum eigenvalue of the Gram matrix ∑T+H−1

t=H [svec(hth⊤t ); 1][svec(hth⊤t )
⊤, 1]

grows linearly in the size T of the data. This is needed to ensure the uniqueness and conver-
gence of the parameter estimation.

A linear lower bound on λmin(∑T+H−1
t=H hth⊤t ) is a known result for the identification of par-

tially observable linear dynamical systems, see the recent overview in (Tsiamis et al., 2022).
In our case, however, elements of svec(hth⊤t ) are products of Gaussians, making the analysis
difficult. If (ht)t≥H are independent, which is the case if they are from multiple independent
trajectories, the result has been established in (Jadbabaie et al., 2021) and (Tian et al., 2023). It
can also be proved with the matrix Azuma inequality (Tropp, 2012). Here, by contrast, we need
to aggregate correlated data to estimate a set of stationary parameters. In sum, the difficulty we
face results from both products of Gaussians and the data dependence.

In principle, given enough burn-in time, state xt, and hence observation yt and truncated
history ht, converge to the steady-state distributions, and samples with an interval of the order
of mixing time are approximately independent (Levin and Peres, 2017). Hence, intuitively, a
linear lower bound is viable. However, the bound yielded by such an analysis deteriorates
as the system is less stable and the mixing time increases, which is qualitatively incorrect for
linear systems. To eschew such dependence, (Simchowitz et al., 2018) introduces the so-called
small-ball method. We take the same route, while establishing different arguments to handle the
products of Gaussians.

Let us first recall the block martingale small-ball condition (Simchowitz et al., 2018, Defini-
tion 2.1).

Definition 1 (Block martingale small-ball (BMSB) condition). Let ( ft)t≥1 be a stochastic process in
Rd adapted to filtration (Ft)t≥1. We say ( ft)t≥1 satisfies the (k, Γ, q)-BMSB condition for k ∈ N+, Γ ≻
0 and q > 0, if for any t ≥ 1, for any fixed unit vector v ∈ Rd, 1

k ∑k
i=1 P(| ⟨ ft+i, v⟩ | ≥ ∥v∥Γ | Ft) ≥ q

almost surely.

The key Lemma 1 below shows that ([svec(hth⊤t ); 1])t≥H satisfies the BMSB condition.
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Lemma 1. Let ht = [y(t−H+1):t; u(t−H):(t−1)] be the H-step history at time step t ≥ H in system (2.1)
with ut ∼ N (0, σ2

u I) for t ≥ 0. Define filtration Ft := σ(x0, y0, u0, x1, y1, . . . , ut−1, xt, yt). Define
ft := svec(hth⊤t ) and f t := [ ft; 1], adapted to (Ft)t≥H. Recall that for square matrix A, α(A) :=
supk≥0 ∥(A)k∥2ρ(A)−k. As long as H ≥ a1 log(dhα(A∗) log(T/p))

log(ρ(A∗)−1)
for some dimension-free constant a1,

( f t)t≥H is (k, γ2 I, q)-BMSB for k = 4H, γ = Θ(d−3/2
h ), and q = Θ(d−3

h ), where Θ(·) hides the
dependence on dimension-free constants.

Proof. Since svec is a bijection, every vector w ∈ Rdh(dh+1)/2 corresponds to a symmetric matrix
D ∈ Rdh×dh with Frobenius norm ∥w∥. Then, for any unit vector v = [w; s] with w ∈ Rdh(dh+1)/2

and s ∈ R, 〈
f t+i, v

〉
= ⟨ ft+i, w⟩+ s =

〈
svec(ht+ih⊤t+i), svec(D)

〉
+ s = h⊤t+iDht+i + s.

Take Γ = γ2 I for some γ > 0 to be specified later. Then, ∥v∥Γ = γ. It suffices to show that for
i > H for some H > 0,

P(|h⊤t+iDht+i + s| ≥ γ | Ft) ≥ q,

since if so, we have

1
2H ∑2H

i=1 P(|h⊤t+iDht+i + s| ≥ γ | Ft) ≥
1

2H ∑2H
i=H+1 P(|h⊤t+iDht+i + s| ≥ γ | Ft) ≥ q/2,

which means ( f t)t≥H is (2H, γ2 I, q/2)-BMSB.

Now let us take a close look at

ht+i = [y(t+i−H+1):(t+i); u(t+i−H):(t+i−1)].

Since

yt+i = C∗(A∗)ixt + ∑i
j=1 C∗(A∗)j(B∗ut+i−j + wt+i−j) + vt+i,

yt+i | Ft is Gaussian with mean C∗(A∗)ixt and covariance determined by ∑i
j=1 C∗(A∗)j(B∗ut+i−j +

wt+i−j) + vt+i, where we note that vt+i is independent of all other random variables and has
full-rank covariance. Hence, for i ≥ H, ht+i | Ft is Gaussian and has full-rank covariance. Then
intuitively, since ∥D∥F = 1, |h⊤t+iDht+i| | Ft is a well-behaved random variable that can exceed
some γ > 0 with a positive probability q. Formally, let µt,i := E[ht+i | Ft]. By Lemma 3, for
i ≥ H, there exists some absolute constant a > 0, such that

E[|(ht+i − µt,i)
⊤D(ht+i − µt,i) + s| | Ft] ≥ a min{σu, σv}d−3/2

h .

By triangle inequality, we have

|(ht+i − µt,i)
⊤D(ht+i − µt,i) + s| = |h⊤t+iDht+i + µ⊤

t,iDµt,i − 2h⊤t+iDµt,i + s|
≤ |h⊤t+iDht+i + s|+ |µ⊤

t,iDµt,i|+ 2|h⊤t+iDµt,i|.
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Hence,

E[|h⊤t+iDht+i + s| | Ft] ≥ a min{σu, σv}d−3/2
h − E[|µ⊤

t,iDµt,i|+ 2|h⊤t+iDµt,i| | Ft].

Now we argue that for large enough i, E[|µ⊤
t,iDµt,i|+ 2|h⊤t+iDµt,i|] is negligible. Since matrix

A∗ is stable, with probability at least 1 − p, ∥xt∥ = O(d1/2
x log(T/p)) for all t ≥ 0. Hence,

∥C∗(A∗)ixt∥ = O(α(A∗)ρ(A∗)id1/2
x log(T/p)),

where we recall that α(A∗) := supk≥0 ∥(A∗)k∥2ρ(A∗)−k and ∥C∗∥2, ∥A∗∥2 are hidden in O(·).
Then, for i ≥ H,

E[|µ⊤
t,iDµt,i|+ 2|h⊤t+iDµt,i| | Ft] = |

〈
µt,iµ

⊤
t,i, D

〉
F|+ 2E[|

〈
µt,ih⊤t+i, D

〉
F| | Ft]

≤ ∥µt,iµ
⊤
t,i∥F · ∥D∥F + 2E[∥µt,ih⊤t+i∥F · ∥D∥F | Ft]

= ∥µt,i∥2 + 2∥µt,i∥ · E[∥ht+i∥ | Ft].

By definition, µt,i is the concatenation of (C∗(A∗)jxt)i−H+1≤j≤i and zero vectors. Hence,

∥µt,i∥ = O(d1/2
h α(A∗)ρ(A∗)i log(T/p)).

Choose H ≥ a1 log(dhα(A∗) log(T/p))
log(ρ(A∗)−1)

for some dimension-free constant a1 > 0, such that for i > 2H,
we have

∥µt,i∥2 + 2∥µt,i∥ · E[∥ht+i∥ | Ft] ≤ a min{σu, σv}d−3/2
h /2.

Then, we have the desired lower bound that

E[|h⊤t+iDht+i + s| | Ft] ≥ a min{σu, σv}d−3/2
h /2.

On the other hand, since

|h⊤t+iDht+i + s| =
∣∣〈D, ht+ih⊤t+i

〉
F + s

∣∣ ≤ ∥D∥F∥ht+ih⊤t+i∥F + |s| ≤ h⊤t+iht+i + |s|,

we have E[|h⊤t+iDht+i + s|2 | Ft] ≤ 2E[∥ht+i∥4 | Ft] + 2s2. Since ∥ht+i∥ | Ft is sub-Gaussian with

∥∥ht+i∥ | Ft∥ψ2 = O(∥E[ht+ih⊤t+i | Ft]∥1/2
2 ) = O(1),

E[|h⊤t+iDht+i + s|2 | Ft] = O(1). By the Paley-Zygmund inequality, for β ∈ [0, 1] we have

P(|h⊤t+iDht+i + s| ≥ βa min{σu, σv}d−3/2
h /2 | Ft) = Ω((1 − β)2a2d−3

h ),

where the dependence on σu, σv is hidden in Ω(·). By taking β = 1/2, we can see that ( ft)t≥H

satisfies the (k, γ2 I, q)-BMSB condition for k = 4H, γ = Θ(d−3/2
h ) and q = Θ(d−3

h ).

Crucial for its proof is Lemma 3, a lower bound on the expectation of Gaussian quadratic
forms, which might be of independent interest. Then with Lemma 1, following the analysis
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in (Simchowitz et al., 2018, Appendix D), we can show that if additionally, T is large enough,
then with high probability,

λmin

(
∑T+H−1

t=H ft f⊤t
)
= Ω(γ2q2T) = Ω(d−9

h T),

which establishes the persistency of excitation.

Lower bound for Gaussian quadratic forms.

Lemma 2. Let z1, z2, . . . , zd be independent standard Gaussian random variables. Let v = [v1, v2, . . . , vd+1]
⊤ ∈

Sd be a (d + 1)-dimensional unit vector. Then,

infv∈Sd E
[∣∣∣vd+1 + ∑d

i=1 viz2
i

∣∣∣] ≥ 0.8d−3/2.

Proof. Let us consider the value of vd+1. Since E[z2
i ] = 1 for all 1 ≤ i ≤ d, we have

E
[∣∣∣∑d

i=1 viz2
i

∣∣∣] ≤ ∑d
i=1 |vi| ≤

√
d ∑d

i=1 v2
i ≤

√
d(1 − v2

d+1).

Then,

E
[∣∣∣vd+1 + ∑d

i=1 viz2
i

∣∣∣] ≥ |vd+1| − E
[∣∣∣∑d

i=1 viz2
i

∣∣∣] ≥ |vd+1| −
√

d(1 − v2
d+1).

Hence, if |vd+1| ≥ 2
√

d/(4d + 1), we have
√

d(1 − v2
d+1) ≤ |vd+1|/2. It follows that

E
[∣∣∣vd+1 + ∑d

i=1 viz2
i

∣∣∣] ≥ |vd+1|
2

≥
√

d
4d + 1

≥ 1√
5

.

Below we consider the case where |vd+1| < 2
√

d/(4d + 1). Let sign(·) denote the sign function.
Let I+ := {i : sign(vi) = 1, 1 ≤ i ≤ d} and I− := {i : sign(vi) = −1, 1 ≤ i ≤ d} be the index
sets of positive and negative values among (vi)

d
i=1. Then,

E
[∣∣∣vd+1 + ∑d

i=1 viz2
i

∣∣∣] = E
[∣∣∣vd+1 + ∑d

i=1 |vi| sign(vi)z2
i

∣∣∣]
= E

[∣∣∣vd+1 + ∑i∈I+ |vi|z2
i − ∑j∈I− |vj|z2

j

∣∣∣].

For a given v, since (z2
i )

d
i=1 have identical distributions, E

[∣∣∣vd+1 + ∑i∈I+ |vi|z2
i − ∑j∈I− |vj|z2

j

∣∣∣]
has the same value under permutations of (vi)i∈I+ and (vj)j∈I− . Summing over all the permu-
tations of (vi)i∈I+ and (vj)j∈I− gives

dE
[∣∣∣vd+1 + ∑d

i=1 viz2
i

∣∣∣]
≥ E

[∣∣∣d · vd+1 +
(
∑i∈I+ |vi|

)
∑i∈I+ z2

i −
(
∑j∈I− |vj|

)
∑j∈I− z2

j

∣∣∣].

Hence,

E
[∣∣∣vd+1 + ∑d

i=1 viz2
i

∣∣∣] ≥ 1
d

(
∑d

i=1 |vi|
)

E
[∣∣∣d · vd+1 + ∑d

i=1 sign(vi)z2
i

∣∣∣]
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Since ∑d
i=1 |vi| ≥ (∑d

i=1 v2
i )

1/2 = (1 − v2
d+1)

1/2, we have

E
[∣∣vd+1 + ∑d

i=1 viz2
i
∣∣] ≥ (1 − v2

d+1)
1/2

d
infw∈{±1}d E

[∣∣d · vd+1 + ∑d
i=1 wiz2

i
∣∣].

It remains to lower bound infw∈{±1}d E
[∣∣d · vd+1 + ∑d

i=1 wiz2
i

∣∣]. By symmetry, for any pair wi ̸=
wj, the expectation remains the same if we interchange zi and zj. Hence, for any random
variable x,

E[|x + zi − zj|] =
1
2
(E[|x + zi − zj|] + E[|x + zi − zj|]) ≥ E[|x|].

We shall apply this symmetry trick in the following to cancel terms with opposite signs. Let p
denote the number of +1’s and q denote the number of −1’s in w, such that p + q = n. If p ̸= q,
by the symmetry trick,

E
[∣∣d · vd+1 + ∑d

i=1 wiz2
i
∣∣] ≥ E

[∣∣d · vd+1 + ∑|p−q|
i=1 z2

i
∣∣] ≥ Var

(
∑|p−q|

i=1 z2
i
)
= 2|p − q| ≥ 2.

If p = q, again, the symmetry trick yields

E[|d · vd+1 + ∑d
i=1 wiz2

i |] ≥ E[|d · vd+1 + z2
1 − z2

2|] ≥ Var
(
z2

1 − z2
2
)
= 4.

Hence, regardless of p and q, we have infw∈{±1}d E[|d · vd+1 + ∑d
i=1 wiz2

i |] ≥ 2. Then,

E
[∣∣∣vd+1 + ∑d

i=1 viz2
i

∣∣∣] ≥ 2 ·
(1 − v2

d+1)
1/2

d
.

Since |vd+1| < 2
√

d/(4d + 1),

E
[∣∣∣vd+1 + ∑d

i=1 viz2
i

∣∣∣] = 2 · 1√
4d + 1 · d

= 0.8d−3/2.

Hence, overall we have

infv∈Sd E
[∣∣∣vd+1 + ∑d

i=1 viz2
i

∣∣∣] ≥ 0.8d−3/2.

From the proof, we can see that without vd+1, we have the improved bound infv∈Sd−1 E[|∑d
i=1 viz2

i |] ≥
2d−1.

Based on Lemma 2, we can prove the more general Lemma 3 below.

Lemma 3. Let x be a d-dimensional zero-mean Gaussian random vector with covariance Σ. For any
d × d symmetric matrix A and constant b ∈ R that satisfy ∥A∥2

F + b2 = 1, there exists an absolute
constant a > 0, such that E[|x⊤Ax + b|] ≥ aλmin(Σ)d−3/2.
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Proof. Let y := Σ−1/2x. Then y is a standard Gaussian random vector, and x⊤Ax = y⊤Σ1/2 AΣ1/2y.
Let U⊤ΛU be the eigenvalue decomposition of Σ1/2AΣ1/2. Then,

x⊤Ax = y⊤U⊤ΛUy = z⊤Λz,

where z := Uy is still a standard Gaussian random vector.

By the unitary invariance of the Frobenius norm,

∥Λ∥F = ∥U⊤ΛU∥F = ∥Σ1/2AΣ1/2∥F ≥ λmin(Σ)∥A∥F.

Hence,

∥Λ∥2
F + b2 ≥ λ2

min(Σ)∥A∥2
F + b2 ≥ λ2

min(Σ) ∧ 1.

Therefore, by Lemma 2, there exists an absolute constant a > 0, such that

inf∥A∥2
F+b2=1 E[|x⊤Ax + b|] ≥ inf∥Λ∥2

F+b2≥λ2
min(Σ)∧1 E[|z⊤Λz + b|] ≥ a(λmin(Σ) ∧ 1)d−3/2.

4.3 Quadratic regression bound

The following quadratic regression bound is at the core of proving Theorem 1. Its proof builds
on a new persistency of excitation result (Lemma 1). We retain (et)t≥1 in the bound, as in our
problem (et)t≥1 may not correspond to a martingale, and may contain an additional small error
term resulting from using M∗ht to approximate z∗t . For notational convenience, we note that
the ht, ct,Ft in Lemma 4 and its proof slightly abuse the notation, which use different variables
from the rest of the paper. Hence, the indices start with t = 1, rather than t = H in the CoReL-E
and CoReL-I algorithms.

Lemma 4. Let (h∗t )t≥1 be a sequence of d-dimensional Gaussian random vectors adapting to filtration
(Ft)t≥1 with ∥E[h∗t (h

∗
t )

⊤]∥1/2
2 ≤ σ. Define random variable ct = (h∗t )

⊤N∗h∗t + b∗ + et, where N∗ ∈
Rd×d is a positive semidefinite matrix and b∗ ∈ R is a constant. Assume σ and ∥N∗∥2 are O(1). Define
ht = h∗t + δt, where the perturbation vector δt can be correlated with h∗t and its ℓ2 norm is sub-Gaussian
with E[∥δt∥] ≤ ϵ, ∥∥δt∥∥ψ2 ≤ ϵ. Define f ∗t := svec(h∗t (h

∗
t )

⊤) and f
∗
t := [ f ∗t ; 1]. Assume that ( f

∗
t )t≥1

satisfies (k, γ2 I, q)-BMSB condition and ϵ ≤ min(σd1/2, a0γσ−1d−1 log−2(T/p)) for some absolute
constant a0 > 0. Consider

(N̂, b̂) ∈ argmin
N=N⊤,b

∑T
t=1(ct − ∥ht∥2

N − b)2. (4.6)

Then, as long as T ≥ a1kd2q−2 log(d/(γqp)) for some dimension-free constant a1 > 0, we have that
with probability at least 1 − p,

∥N̂ − N∗∥F = O
(

ϵ(γq)−1d1/2 log(T/p)

+ ϵ(γq)−2d1/2T−1 log(T/p)∑T
t=1 ∥et∥+ (γq)−2T−1

∥∥∥∑T
t=1 f

∗
t et

∥∥∥),

where σ and ∥N∗∥2 are problem-dependent constants hidden in O(·).
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Proof. Regression (4.6) can be written as

argmin
svec(N),b

∑T
t=1

(
ct − svec(hth⊤t )

⊤svec(N)− b
)2.

Define ft := svec(hth⊤t ) and f t := [ ft; 1]. It is a linear regression problem with extended
covariates f t, which can be further rewritten as

argmin
svec(N),b

∑T
t=1

(
ct − f

⊤
t [svec(N); b]

)2. (4.7)

Let F := [ f 1, f 2, . . . , f T]
⊤ be the T × d(d+1)

2 matrix whose tth row is f⊤t . Define F∗ similarly by
replacing f t by f

∗
t . Solving linear regression (4.7) gives

F⊤F[svec(N̂); b̂] = ∑T
t=1 f tct.

Substituting ct = ( f
∗
t )

⊤[svecN∗; b∗] + et into the above equation yields

F⊤F[svec(N̂); b̂] = F⊤F∗
[svec(N∗); b∗] + F⊤

ξ,

where ξ denotes the vector whose tth element is et. Rearranging the terms, we have

F⊤F[svec(N̂ − N∗); b̂ − b∗] = F⊤
(F∗ − F)[svec(N∗); b∗] + F⊤

ξ. (4.8)

Next, we show that λmin(F⊤F) = Ω(γ2q2T), which we achieve by showing ( f t)t≥1 satisfies
the BMSB condition. By our assumption, ( f

∗
t )t≥1 satisfies (k, γ2 I, q)-BMSB condition, meaning

that for any fixed unit vector v ∈ R
d(d+1)

2 +1, it holds almost surely that

1
k ∑k

i=1 P
(∣∣〈 f

∗
t+i, v

〉∣∣ ≥ γ | Ft
)
≥ q.

For any fixed unit vector v ∈ R
d(d+1)

2 +1, we have∣∣〈 f t, v
〉∣∣ = ∣∣〈 f

∗
t , v

〉
+

〈
f t − f

∗
t , v

〉 ∣∣ ≥ ∣∣〈 f
∗
t , v

〉∣∣− ∣∣〈 f t − f
∗
t , v

〉∣∣ ≥ ∣∣〈 f
∗
t , v

〉∣∣− ∥ f t − f
∗
t ∥.

To bound ∥ f t − f
∗
t ∥ = ∥ ft − f ∗t ∥ = ∥hth⊤t − h∗t (h

∗
t )

⊤∥F, we have

∥h∗t (h
∗
t )

⊤∥F
(i)
≤ 2∥h∗t (h

∗
t )

⊤ − hth⊤t ∥2 = 2∥h∗t (h
∗
t − ht)

⊤ + (h∗t − ht)h⊤t ∥2 ≤ 2(∥h∗t ∥+ ∥ht∥)∥δ∥,

where (i) follows from the fact that matrix h∗t (h
∗
t )

⊤ − hth⊤t has at most rank two. Since h∗t
is Gaussian with ∥E[h∗t (h

∗
t )

⊤]∥1/2
2 ≤ σ, ∥h∗∥ is sub-Gaussian with its mean and sub-Gaussian

norm bounded by O(σd1/2). Since ∥δ∥ is sub-Gaussian with its mean and sub-Gaussian norm
bounded by ϵ ≤ σd1/2, we conclude that ∥h∗(h∗)⊤ − hh⊤∥2 is subexponential with its mean and
subexponential norm bounded by O(ϵσd1/2). Hence, with probability at least 1 − p,

∥h∗(h∗)⊤ − hh⊤∥2 = O(ϵσd1/2 log(T/p)).
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Then, for all 1 ≤ t ≤ T, since ∥ f t − f
∗
t ∥ = O(ϵσd1/2 log(T/p)), there exists an absolute constant

a0 > 0, such that as long as ϵ ≤ a0γ
σd1/2 log(T/p) , ∥ f t − f

∗
t ∥ ≤ γ/2. It follows that

1
k ∑k

i=1 P(|
〈

f t+i, v
〉
| ≥ γ/2 | Ft) ≥

1
k ∑k

i=1 P(|
〈

f
∗
t+i, v

〉
| ≥ γ | Ft) ≥ q,

which means that ( f t)1≤t≤T is (k, γ2 I/4, q)-BMSB. Following the analysis in (Simchowitz et al.,
2018, Appendix D), by lower bounding infv:∥v∥=1 ∑T

t=1 ⟨v, ft⟩2 using a covering argument (Sim-
chowitz et al., 2018, Lemma 4.1), we can show that for a given p ∈ (0, 1), as long as T ≥
a1kd2q−2 log(d/(γqp)) for some absolute constant a1 > 0, then with probability at least 1 − p,
we have

λmin

(
∑T

t=1 f t f
⊤
t

)
= Ω(γ2q2T).

Hence, we have λmin(F⊤F) = Ω(γ2q2T).

Now we return to (4.8). By inverting F⊤F, we obtain

∥[svec(N̂ − N∗); b̂ − b∗]∥ = ∥F†
(F∗ − F)[svec(N∗); b∗] + F†

ξ∥

≤ ∥F†
(F∗ − F)[svec(N∗); b∗]∥︸ ︷︷ ︸

(a)

+ ∥F†
ξ∥︸ ︷︷ ︸

(b)

. (4.9)

Term (a) is upper bounded by

σmin(F)−1∥(F∗ − F)[svec(N∗); b∗]∥ = O(σmin(F)−1)∥(F∗ − F)svec(N∗)∥
= O((γq)−1T−1/2)∥(F∗ − F)svec(N∗)∥.

Using arguments similar to those in (Mhammedi et al., 2020, Section B.2.13), we have

∥(F∗ − F)svec(N∗)∥2 = ∑T
t=1

〈
svec(h∗t (h

∗
t )

⊤)− svec(hth⊤t ), svec(N∗)
〉2

= ∑T
t=1

〈
h∗t (h

∗
t )

⊤ − hth⊤t , N∗
〉2

F

≤ ∥N∗∥2
2 ∑T

t=1 ∥h∗t (h
∗
t )

⊤ − hth⊤t ∥2
∗

(i)
≤ 4∥N∗∥2

2 ∑T
t=1 ∥h∗t (h

∗
t )

⊤ − hth⊤t ∥2
2,

where (i) follows from the fact that the matrix h∗t (h
∗
t )

⊤ − hth⊤t has at most rank two. Since

∥h∗(h∗)⊤ − hh⊤∥2
2 = O(ϵ2σ2d∥ log2(T/p)),

term (a) in (4.9) is bounded by

O
(
(γq)−1T−1/2ϵσ∥N∗∥2d1/2T1/2 log(T/p)

)
= O((γq)−1d1/2ϵ log(T/p)).

Now we consider term (b) in (4.9):

(b) = ∥F†
ξ∥ ≤ λmin(F⊤F)−1∥F⊤

ξ∥ = O((γq)−2T−1)
∥∥∥∑T

t=1 f tet

∥∥∥.
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Since ∥∥∥∑T
t=1 f tet

∥∥∥ ≤
∥∥∥∑T

t=1 f
∗
t et

∥∥∥+ ∑T
t=1 ∥ f t − f

∗
t ∥∥et∥.

we have

(b) = O
(
(γq)−2T−1

∥∥∥∑T
t=1 f

∗
t et

∥∥∥+ ϵ(γq)−2d1/2T−1 log(T/p)∑T
t=1 ∥et∥

)
.

Combining the bounds on (a) and (b), we show that as long as T ≥ a1kd2q−2 log(d/(γqp)),
with probability at least 1 − p,

∥[svec(N̂ − N∗); b̂ − b∗]∥

= O(ϵ(γq)−1d1/2 log(T/p) + ϵ(γq)−2d1/2T−1 log(T/p)∑T
t=1 ∥et∥+ (γq)−2T−1

∥∥∥∑T
t=1 f tet

∥∥∥).

4.4 Perturbed linear regression bound

Identifying the time-invariant latent dynamics involves linear regression with correlated data and
perturbed measurements. The following Lemma 5 extends the previous linear system identifica-
tion result in (Simchowitz et al., 2018) to the case with noises in both input and output variables.
In Lemma 5, γ and q are treated as dimension-free constants (in contrast to Lemma 4), which is
indeed the case in our application of Lemma 5 to (z∗t )t≥H in analyzing SysId (3.4) for CoReL-E
in §4.5.1, and in analyzing alignment matrix estimation (3.8) in Algorithm 2 for CoReL-I in
§4.5.2. Note that the bound in Lemma 5 is worse than that in the time-varying setting in (Tian
et al., 2023), due to the treatment of correlated data.

Lemma 5. Let (x∗t )t≥1 be a sequence of d1-dimensional Gaussian random vectors adapted to a filtration
(Ft)t≥1 with ∥E[x∗t (x∗t )

⊤]∥1/2
2 ≤ σ. Define y∗t = A∗x∗t + et, where A∗ ∈ Rd2×d1 and et | Ft is

Gaussian with zero mean and ∥E[ete⊤t ]∥1/2
2 ≤ ϵ. Define yt = y∗t + δ

y
t and xt = x∗t + δx

t , where the
perturbation vectors δx

t and δ
y
t can be correlated with x∗t and y∗t , and their ℓ2 norms are sub-Gaussian

with E[∥δx
t ∥] ≤ ϵx, ∥∥δx

t ∥∥ψ2 ≤ ϵx and E[∥δ
y
t ∥] ≤ ϵy, ∥∥δ

y
t ∥∥ψ2 ≤ ϵy. Assume that (x∗t )t≥1 satisfies

the (k, γ2 I, q)-BMSB condition, ϵx ≤ a0γ2q2/σ for some absolute constant a0 > 0, σ, ϵ, ϵx, ϵy are O(1),
and k, γ, q are Θ(1). Consider

Â ∈ argmin
A∈Rd2×d1

∑T
t=1 ∥yt − Axt∥2. (4.10)

Then, as long as T ≥ a1kq−2(log(1/p) + d1 log(10/q) + d1 log(σγ−1d1 log(T/p))) for some absolute
constant a1 > 0, we have that with probability at least 1 − p,

∥Â − A∗∥2 = O((ϵx + ϵy)d1/2
1 log(T/p) + (d2 + d1 log(d1 log(T/p)) + log(1/p))1/2T−1/2).

Proof. Let X ∈ RT×d1 denote the matrix whose tth row is x⊤t . Define X∗, Y, E, ∆x, ∆y similarly.
To solve the regression problem, we set its gradient to be zero and substitute in Y = X∗(A∗)⊤ +

E + ∆y to obtain

Â(X⊤X) = A∗(X∗)⊤X + E⊤X + ∆⊤
y X. (4.11)
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Substituting in X = X∗ + ∆x gives

(Â − A∗)((X∗)⊤X∗)

= A∗(X∗)⊤∆x − Â(∆⊤
x ∆x + ∆⊤

x X∗ + (X∗)⊤∆x) + E⊤X∗ + E⊤∆x + ∆⊤
y X∗ + ∆⊤

y ∆x.
(4.12)

Now we deal with each term on the right-hand side. Since (X∗)⊤∆x = ∑T
t=1 x∗t (δ

x
t )

⊤, by the
triangle inequality,

∥(X∗)⊤∆x∥2 ≤ ∑T
t=1 ∥x∗t (δ

x
t )

⊤∥2 ≤ ∑T
t=1 ∥x∗t ∥ · ∥δx

t ∥.

Since (x∗t )t≥1 are Gaussian, with probability at least 1 − p, ∥x∗t ∥ = O(σd1/2
1 log1/2(T/p)). Since

(∥δx
t ∥)t≥1 are sub-Gaussian with E[∥δx

t ∥] ≤ ϵx and ∥∥δx
t ∥∥ψ2 ≤ ϵx, with probability at least

1 − p, ∥δx
t ∥ = O(ϵx log1/2(T/p)). Hence,

∥(X∗)⊤∆x∥2 = O(ϵxσd1/2
1 T log(T/p)).

Similarly, with probability at least 1 − p,

∥∆⊤
x ∆x∥2 = O(ϵ2

xT log(T/p)), ∥E⊤∆x∥2 = O(ϵϵxd1/2
2 T log(T/p)),

∥∆⊤
y X∗∥2 = O(ϵyσd1/2

1 T log(T/p)), ∥∆⊤
y ∆x∥2 = O(ϵxϵyT log(T/p)).

It remains to bound ∥Â∥2. Notice that with probability at least 1 − p,

∥(X∗)⊤X∗∥2 ≤ ∑T
t=1 ∥x∗t ∥2 = O(σ2d1 log(T/p)T).

Let T0 := a1kq−2(log(1/p) + d1 log(10/q) + d1 log(σγ−1d1 log(T/p))) for some absolute con-
stant a1 > 0. Then, by (Simchowitz et al., 2018, Appendix D), as long as T ≥ T0, with probability
at least 1 − p, λmin((X∗)⊤X∗) = γ2q2T/32. Since X⊤X = (X∗)⊤X∗ + ∆⊤

x X∗ + (X∗)⊤∆x + ∆⊤
x ∆x,

λmin(X⊤X) ≥ λmin((X∗)⊤X∗)− ∥∆⊤
x X∗ + (X∗)⊤∆x + ∆⊤

x ∆x∥2.

Hence, there exists an absolute constant a0 > 0, such that as long as ϵx ≤ a0γ2q2/σ, λmin(X⊤X) =

Ω(γ2q2T), which implies ∥X†∥2 = O(γ−1q−1T−1/2). From (4.11), we have

∥Â∥2 = (∥A∗∥2∥X∗∥2 + ∥E∥2 + ∥∆y∥2)∥X†∥2 = O(γ−1q−1(σ∥A∗∥2 + ϵ + ϵy)) = O(1),

where in the last equality we treat γ, q, σ, ϵ, ϵy as problem-dependent constants.

Finally, by (Simchowitz et al., 2018, Theorem 2.4), as long as T ≥ T0,

∥E⊤(X∗)†∥2 = O((d2 + d1 log(d1 log(T/p)) + log(1/p))1/2T−1/2).

Combining all the above individual bounds with the terms on the right-hand side of (4.12),
we have

∥Â − A∗∥2 = O((ϵx + ϵy)d1/2
1 log(T/p) + (d2 + d1 log(d1 log(T/p)) + log(1/p))1/2T−1/2),

which completes the proof.
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4.5 Proof of the main results

In this section, we prove the sample complexity bounds for CoReL-E and CoReL-I in Theorem 1.
As we shall see, the proofs for the two algorithms share similar ideas and tools. We start
with the same analysis for both algorithms, and split into separate paragraphs as the analysis
diverges.

By Proposition 3,

ct := ∑t+dx−1
τ=t (cτ − ∥uτ∥2

R∗) = ∥M∗ht∥2 + δt + b
∗
+ et,

where δt = O(α2ρH log(T/p)) is a small error term, b
∗
= O(dx) is a positive constant, and et

is a zero-mean subexponential random variable with ∥et∥ψ1 = O(d3/2
x ). Recall that we define

N∗ := (M∗)⊤M∗, ft := svec(hth⊤t ), f t := [svec(hth⊤t ); 1], and dh := H(dy + du). Rewriting the
above equation, we have

ct = f
⊤
t [svec(N∗); b

∗
] + δt + et, (4.13)

By Lemma 1, f t is (k, γ2 I, q)-BMSB for k = 4H, γ = Θ(d−3/2
h ) and q = Θ(d−3

h ). Then, by
Lemma 4, N̂ obtained by solving regression (3.2) has the guarantee that there exists some
absolute constant a0 > 0, such that as long as T ≥ a0H9(dy + du)8 log(H(dy + du)/p), with
probability at least 1 − p,

∥N̂ − N∗∥F = O
(
(γq)−2T−1

∥∥∥∑T
t=1 f t(δt + et)

∥∥∥).

By Proposition 3, as long as H ≥ a1 log(αT log(T/p))
log(1/ρ)

for some problem-dependent constant a1 > 0,

∥∑T+H−1
t=H f tet∥ = O(d3/2

x dhH1/2T1/2 log1/2(1/p)).

Since ∥∑T+H−1
t=H f tδt∥ = O(α2dhρH log(T/p)), we have

∥N̂ − N∗∥F = O
(
(γq)−2T−1(d3/2

x dhH1/2T1/2 log1/2(1/p) + α2dhρH log(T/p)
))

.

As long as H ≥ a2 log(αT log(T/p))
log(1/ρ)

for some problem-dependent constant a2 > 0, we have

∥N̂ − N∗∥F = O(H21/2d3/2
x (dy + du)

10T−1/2 log1/2(1/p)).

By (Tu et al., 2016, Lemma 5.4), there exists an orthogonal matrix S, such that ∥M̂ − SM∗∥F is
of the same order of ∥N̂ − N∗∥F. To understand the approximation error ẑt − Sz∗t , recall that
z∗t = M∗ht + δt, where δt = (A∗

)Hz∗t−H. Then,

∥ẑt − Sz∗t ∥ = ∥(M̂ − SM∗)ht − Sδt∥ ≤ ∥M̂ − SM∗∥2∥ht∥+ ∥δt∥.

Since ∥ht∥ is sub-Gaussian with E[∥ht∥] = O(d1/2
h ), ∥∥ht∥∥ψ2 = O(d1/2

h ), we have ∥M̂ −
SM∗∥2∥ht∥ is sub-Gaussian with its mean and sub-Gaussian norm bounded by

O(H11d3/2
x (dy + du)

21/2T−1/2 log1/2(1/p)). (4.14)
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Notice that ∥δt∥ is sub-Gaussian with mean and sub-Gaussian norm bounded by O(α(A∗
)ρ(A∗

)Hd1/2
x ),

which, by our choice of H, is dominated by (4.14). Hence, for all t ≥ H, ∥ẑt − Sz∗t ∥ is sub-
Gaussian with its mean and sub-Gaussian norm bounded by (4.14).

The latent cost is also described in Proposition 1, given by

ct = ∥z∗t ∥2
Q∗ + ∥ut∥2

R∗ + b∗ + et,

where b∗ := E[∥xt − z∗t ∥2
Q∗ ], et := ∥xt − zt∥2

Q∗ + 2
〈
z∗t , xt − z∗t

〉
Q∗ is a zero-mean subexponential

random variable with ∥et∥ψ1 = O(d1/2
x ), and the random process (et)t≥H is adapted to filtration

(Ft)t≥H. In a similar way to the analysis for ([svec(hth⊤t ); 1])t≥H, ([svec(z∗t (z
∗
t )

⊤); 1])t≥H satisfies
the (Θ(1), Θ(d−3/2

x ), Θ(d−3
x ))-BMSB condition. By the perturbed quadratic regression bound

(Lemma 4), Q̃ from regression (3.3) has the guarantee that

∥Q̃ − SQ∗S⊤∥F = O
(

H11d3/2
x (dy + du)

21/2T−1/2 log1/2(1/p)

· (d9/2
x d1/2

x log(T/p) + d9
xd1/2

x log(T/p)T−1 ∑T
t=1 ∥et∥)

+ d9
xT−1

∥∥∥∑T+H−1
t=H [svec(ẑt ẑ⊤t ); 1]et

∥∥∥).

With probability at least 1 − p, ∥et∥ = O(d1/2
x log(T/p)). By similar analysis to that for

∑T+H−1
t=H f tet in the proof of Proposition 3, we have

∑T+H−1
t=H [svec(z∗t (z

∗
t )

⊤); 1]et = O(d1/2
x dx H1/2T1/2 log1/2(1/p)).

Since Q∗ ≽ 0 and Q̂ is the projection of Q̃ onto positive semidefinite matrices, we have

∥Q̂ − SQ∗S⊤∥F ≤ ∥Q̃ − SQ∗S⊤∥F = O(H11d23/2
x (dy + du)

21/2T−1/2 log5/2(T/p)).

4.5.1 Remaining proof of Theorem 1 for CoReL-E

We proceed to analyze system identification. The latent dynamics is described in Proposition 1,
given by

z∗t+1 = A∗z∗t + B∗ut + L∗it+1,

To apply the perturbed linear regression bound (Lemma 5), the noise term L∗it+1 | Ft needs to
be a zero-mean Gaussian, which does not hold, since

it+1 = yt+1 − C∗(A∗z∗t + B∗ut)

= C∗((A∗xt + B∗ut + wt) + vt+1)− C∗(A∗z∗t + B∗ut)

= C∗A∗(xt − z∗t ) + C∗wt + vt+1,

where xt − z∗t ∈ Ft. To solve this problem, we consider a different filtration (Gt := σ(y0, u0, y1, . . . , ut−1, yt))t≥0

that involves only observations and actions. Then, z∗t ∈ Gt and L∗it+1 | Ft is a zero-mean Gaus-
sian with the operator norm of the covariance matrix bounded by O(1). With this filtration, by
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the perturbed linear regression bound (Lemma 5), for T greater than a constant polynomial in
the problem parameters, we have

∥[Â, B̂]− S[A∗S⊤, B∗]∥2 = O(H11d3/2
x (dy + du)

21/2T−1/2 log1/2(1/p) · d1/2
x log(T/p))

= O(H11d2
x(dy + du)

21/2T−1/2 log3/2(T/p)).

Hence, ∥Â − SA∗S⊤∥2, ∥B̂ − SB∗∥2 and ∥Q̂ − SQ∗S⊤∥2 are all bounded by

O(H11d23/2
x (dy + du)

21/2T−1/2 log3/2(T/p)).

4.5.2 Remaining proof of Theorem 1 for CoReL-I

We proceed to analyze cost-driven system identification (Algorithm 2). Define M∗
1 := [A∗M∗, B∗]

as the composition of one-step transition and representation functions and N∗
1 := (M∗

1)
⊤M∗

1 ,
which is estimated by N̂1 in (3.7).

By the same analysis as that of N̂, we have

∥N̂1 − N∗
1 ∥F = O(H1/2(H(dy + du) + dx)

10d3/2
x T−1/2 log1/2(1/p)).

By (Tu et al., 2016, Lemma 5.4), there exists orthogonal matrices S1, such that ∥M̂1 − S1M∗
1∥F

is on the same order of ∥N̂1 − N∗
1 ∥F. The bound on ∥M̂1 − S1M∗

1∥F applies to ∥B̃ − S1B∗∥2

as well. Since [S1A∗S⊤SM∗, S1B∗] = S1M∗
1 , by the perturbation bounds of the Moore-Penrose

inverse (Wedin, 1973), ∥Ã − S1A∗S⊤∥2 is also on the same order of ∥N̂1 − N∗
1 ∥F.

To align Ã with SA∗S⊤, we compute another matrix Ŝ0 by solving the regression (3.8) from
M̂1[ht; ut] to M̂ht+1. Since M̂1[ht; ut] and M̂ht+1 approximate S1z∗t+1 and Sz∗t+1, respectively, (3.8)
is essentially a linear regression that estimates the alignment matrix SS⊤

1 with perturbed vari-
ables M̂1[ht; ut] and M̂ht+1. The ℓ2 norm of the perturbation on Sz∗t is given by (4.14). Similarly,
the ℓ2 norm of the other perturbation ∥M̂1[ht; ut]− S1z∗t+1∥ is sub-Gaussian with its mean and
sub-Gaussian norm bounded by

O(H1/2(H(dy + du) + dx)
21/2d3/2

x T−1/2 log1/2(1/p)).

Hence, by the perturbed linear regression bound (Lemma 5), for T greater than a constant
polynomial in the problem parameters, we have

∥Ŝ0 − SS⊤
1 ∥2

= O(H1/2(H(dy + du) + dx)
21/2d3/2

x T−1/2 log1/2(1/p) · d1/2
x log(T/p))

= O(H11d2
x(dy + du)

21/2T−1/2 log3/2(T/p)).

As a result,

∥Â − SA∗S⊤∥2 = ∥Ŝ0Ã − SS⊤
1 S1A∗S⊤∥2

= ∥(Ŝ0 − SS⊤
1 )Ã∥2 + ∥SS⊤

1 (Ã − S1A∗S⊤)∥2

= O(H11d2
x(dy + du)

21/2T−1/2 log3/2(T/p)),
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and ∥B̂ − SB∗∥2 has the same order. Hence, ∥Â − SA∗S⊤∥2, ∥B̂ − SB∗∥2 and ∥Q̂ − SQ∗S⊤∥2 are
all bounded by

O(H11d23/2
x (dy + du)

21/2T−1/2 log5/2(T/p)).

5 Additional related work

(Oymak and Ozay, 2019) studies the identification of partially observable linear dynamical
systems from a single trajectory, which presents a finite-sample analysis of identifying the
Markov parameter and a perturbation analysis of the Ho-Kalman algorithm (Ho and Kalman,
1966). (Simchowitz et al., 2019) relaxes the stability requirement to marginal stability by using
prefiltered least squares to identify the Markov parameter. The method in (Zheng and Li, 2020)
applies to unstable systems but requires multiple trajectories. Since the Markov parameter
maps control input histories to observations, these methods do not work with costs and use the
Markov parameter as an intermediate step to identify the system. By contrast, our methods,
entirely driven by the costs and closely connected with empirical methods, directly learn the
representation function and the latent model. Directly learning the latent model connects our
work to the identification of fully observable linear dynamical systems. (Simchowitz et al., 2018)
introduces small-ball conditions to handle correlated data and characterizes the statistical rates
for stable and unstable systems, both proving to be useful for our analysis.

Online control of partially observable linear dynamical systems is considered in (Lale et al.,
2020, 2021) for stochastic noises and in (Simchowitz et al., 2020) for nonstochastic noises. Refer-
ence (Zheng et al., 2021) considers end-to-end sample complexity and is closest to our setup. All
these methods rely on the estimation of Markov parameters. For a discussion of the literature
in more detail and breadth, we refer the reader to the recent survey (Tsiamis et al., 2022).

6 Conclusion and future work

We studied cost-driven state representation learning for solving unknown infinite-horizon time-
invariant LQG control. We established finite-sample guarantees for two methods, which differ
in whether the latent state dynamics is learned explicitly by minimizing the transition predic-
tion errors, or implicitly by using the transition for future state and cost predictions, with the
latter being motivated by that used in MuZero (Schrittwieser et al., 2020). For MuZero-style
latent model learning, our analysis identifies a coordinate misalignment problem in the latent
state space, suggesting the value of multi-step future state and cost prediction. A limitation of
this work is that we only consider state representation based on truncated histories, i.e., frame
stacking, as used in MuZero; the recursive form of the representation function, as in the Kalman
filter, is also used empirically (Ha and Schmidhuber, 2018; Hafner et al., 2019a), and might be
worth further investigation.

Many questions remain to be answered in state representation learning for control. Provable
generalization of cost-driven state representation learning to nonlinear observation channels
or dynamics is a natural consideration. Moreover, with the ubiquity of visual perception in
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real-world control systems, what if we have a time-varying observation function or multiple
observation functions, modeling images taken from different angles? In reality, most of the
time we do not have a well-defined cost function; learning task-relevant state representations
from demonstrations is another intriguing direction.
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A Auxiliary results

Lemma 6. Let x and y be random vectors defined on the same probability space. Then, ∥E[xy⊤]∥2
2 ≤

∥E[xx⊤]∥2 · ∥E[yy⊤]∥2.

Proof. Let dx, dy be the dimensions of the values of x, y, respectively. For any vectors v ∈ Rdx ,
w ∈ Rdy , by the Cauchy-Schwarz inequality,

(v⊤E[xy⊤]w)2 = (E[v⊤xy⊤w])2

≤ E[(v⊤x)2] · E[(w⊤y)2]

= E[v⊤xx⊤v] · E[w⊤yy⊤w]

= (v⊤E[xx⊤]v) · (w⊤E[yy⊤]w).

Taking the maximum over v, w on both sides subject to ∥v∥, ∥w∥ ≤ 1 gives

∥E[xy⊤]∥2
2 ≤ ∥E[xx⊤]∥2 · ∥E[yy⊤]∥2,

which completes the proof.

Lemma 7. Let x, y be random vectors of dimensions dx, dy, respectively, defined on the same probability
space. Then, ∥Cov([x; y])∥2 ≤ ∥Cov(x)∥2 + ∥Cov(y)∥2.

Proof. Let Cov([x; y]) = DD⊤ be a factorization of the positive semidefinite matrix Cov([x; y]),
where D ∈ R(dx+dy)×(dx+dy). Let Dx and Dy be the matrices consisting of the first dx rows and
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the last dy rows of D, respectively. Then,

Cov([x; y]) = DD⊤ = [Dx; Dy][D⊤
x , D⊤

y ]

=

[
DxD⊤

x DxD⊤
y

DyD⊤
x DyD⊤

y

]
.

Hence, Cov(x) = DxD⊤
x and Cov(y) = DyD⊤

y . The proof is completed by noticing that

∥Cov([x; y])∥2 = ∥D⊤D∥2 = ∥[D⊤
x , D⊤

y ][Dx; Dy]∥2

= ∥D⊤
x Dx + D⊤

y Dy∥2

≤ ∥D⊤
x Dx∥2 + ∥D⊤

y Dy∥2

= ∥Cov(x)∥2 + ∥Cov(y)∥2.
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